(”\lnterloc

maximo. mobility. cloud.

Mobile Informer Installation Guide

v3.7.1, February 2025

Table of Contents

Preface

Document Changelog

Release Notes

Supported Platforms

Installation

Obtaining Binaries

Pre-Installation Checks

Setup Phase for Maximo 7.6

Informer Installation

Setup Phase for MAS Manage

Post-Installation Phase

Informer Configuration Guide

Informer License Installation

Cluster Configuration

LDAP Configuration

Optional Tools and Components

Informer Push Relay

Informer Server Check Utility

External Queue Database Configuration

Appendix

Appendix:
Appendix:
Appendix:
Appendix:
Appendix:
Appendix:
Appendix:
Appendix:
Appendix:
Appendix:
Appendix:
Appendix:
Appendix:
Appendix:
Appendix:

Maximo Properties

Informer Cron Tasks

Maximo Loggers

Informer Installer Details

Using an external Oracle Database for Informer Queues

Using an external SqlServer Database for Informer Queues

Using an external DB2 Database for Informer Queues

Using an external MySQL Database for Informer Queues

Using an external SQLite Database for Informer Queues

Using an external PostgreSQL Database for Informer Queues
Additional Pre-Installation Checks when Upgrading from Informer 4.x
Additional Pre-Installation Checks when Upgrading from Informer 5.2
Additional Pre-Installation Checks when Upgrading from Informer 5.3
Additional Pre-Installation Checks when Upgrading from Informer 5.5
Pre-6 Queue Processors

© U1 N =

10
11
12
15
16
20
21
23
24
25
31
34
35
40
44
46
47
39
65
66
69
70
71
72
73
74
75
80
85
88
89

Preface

The Mobile Informer platform is a mobility environment built specifically to support mobile
applications that integrate directly with Maximo. The platform enables rapid development of
lightweight, extensible applications that allow for direct communication with Maximo via web
services and comply with open standards.

Deployed within Maximo, the Mobile Informer server platform requires no middleware software.
Mobile Informer manages the heavy-lifting and complexity of mobilizing Maximo, letting you
design custom user interfaces specifically to support each business process, while taking advantage
of the wide range of native features available in each mobile environment.

This guide walks through the process of installing Informer into an existing Maximo system.

Document Changelog

Document Version 3.7.1

» Update Informer Change Log.

Document Version 3.7

» Update Maximo Manager Version

Document Version 3.6.1

» Updated supported MAS Manager Version.

Document Version 3.6
e Added instructions for MASS installation.

Document Version 3.5

» Updated for Informer release 6.0.

Document Version 3.4

» Updated latest informer release.

Document Version 3.3

» Updated latest informer release.

Document Version 3.2

* Remove IRM installation requirement

Document Version 3.1

» Updated compatibility section

e Minor clarifications

Document Version 3.0

* Structural, cosmetic, and editing improvements

Document Version 2.11

* Remove extraneous log snippet at the end of the "Online Installation Phase" page

Document Version 2.10

» Update references to 5.8 changelog and binaries not expressly mentioned previously, despite
5.8 features being documented in versions 2.8 and 2.9

Document Version 2.9

* Added documentation for use of PostgreSQL for external informer queues

Document Version 2.8
* Added an LDAP authentication guide

» Updated and expanded the "Cluster Configuration" guide

* Documentation of new Queue processor configuration properties (added in 5.8.0), replacing
a collection of old properties

* Clarified wording on the "Leftover PMCOMSR Service" Pre-Installation check

Document Version 2.7

* Remove 7.5 from the "Supported Platforms" list

Document Version 2.6

* Add a "Pre-Installation Check" to check the health and functionality of Maximo’s "Admin
Mode" toggling

» Separated out the universal "Pre-Installation Checks" from the upgrade-specific ones. Each
relevant upgrade version now has its own appendix with all relevant checks.

* Move the "Pre-Installation Checks" to the main "Installation Guide" section to emphasize the

fact that it is not elective, and to reduce the chance that it gets skipped

Document Version 2.5

» Update document references for Informer 5.7

* Add section in "Optional components" to cover the use of an external Informer Queue
schema, added in 5.7.0

* Rework of monitoring and confirmation instructions in the "Online Installation Phase"
documentation

* Added an additional "Pre-Check" for ISCATALOGDEVICE duplicates, when upgrading from
5.5.0 or earlier

» Provide information about IP address blocks used with APNS or GCM(collectively known as
the optional "Push" feature)

» Replaced defunct IBM link describing "webservices.unify.faults"

Document Version 2.4

e Include references to the latest Informer and IRM versions (Informer 5.6.0 and IRM 2.1.1)
» Update Installation monitoring step to recommend query against ISPACKAGE

» Updated appendix to include NOTIFYCLASSES in Service list and state new init order

Document Version 2.3

e Include references to the latest Informer and IRM versions (Informer 5.5.2 and IRM 2.1.0)

» Slightly simplify a few steps, in recognition of simplifications provided by the above version
upgrades

* Removed the details about the security mapping config in the Informer installation
appendix, because the installer no longer creates it, nor is such an exception recommended
any longer.

Document Version 2.2

e Cited and recommended versions were increased to IRM 2.0.15 and Informer 5.5.0-hf14

* Pre-Installation Checks now include a proactive check for an Informer upgrade issue

surrounding required fields

 Pre-Installation Checks now include a proactive check for a Maximo 7.1 to 7.5 upgrade issue
involving the PMCOMSR Service

* SQL statement to disable the ISNOTIFYCLASSES is no longer necessary, and was removed
from the guide

» Manual creation of the IRM logger is no longer necessary, and was removed from the guide

 "Live Installation Phase" now includes a check for the explicit"Application of ISINFORMER’s
manifest has finished" message, instead of waiting for a period of inactivity

* Post-Installation instructions include updated recommendations regarding the

informer.catalog.xml.store property, which is now enabled by default in new installations

Document Version 2.1

* Removed the recommendation to uncomment the NOTIFYINFO security exception block.
This is no longer necessary nor appropriate with modern versions of the Informer Clients.

* Added an explicit step for terminating the installer JVM and starting up the full system once
online installation is complete.

» Fix SQL errors in pre-installation steps (apparently caused by autocorrect/spellcheck)

Document Version 2.0

» Restructured document to separate instruction/steps from data/reference.
» Combined IRM and Informer builds, to make installation and upgrade faster.
* Added information about the creation and use of a dedicated IRM log.

* Clarified criteria for knowing when installation is complete(successfully or otherwise).

Corrected some outdated details and removed some now-obsolete elements no longer
relevantin 5.5.

Document Version 1.0

Initial version.

Release Notes

These release notes are stated at a high level, covering only the most significant and noteworthy
features.

More detailed, technical release notes can be found on the product page at
https://support.interlocsolutions.com/projects/informer-server/wiki/Changelog

Changes in Informer 6.2, since 6.1

* Many Bug Fixes

* Providing ability to remove multiple users at once from profile
» Showing queue processors error list

» Allow replacement / update of an existing resource on a profile

* Display Maximo data type in notification object and catalog attributes lists in Informer
Developer

* Improve robustness of User Refresh processing

* Retain users in an "inactive" state when permissions are invalidated
* Increase description length of ISFILEFRAGMENT

* Prevent sendFile from writing in arbitrary locations.

* Catalog data does not respect the BIGINT attribute value

Changes in Informer 6.1, since 6.0

* Many Bug Fixes.

Profile Self-Test.
* Improved support of command jars and LiveUtil jars.

» Support multiple LDAP servers for authentication.

Azure AD (OIDC) login support.

Changes in Informer 6.0, since 5.9

* Better support for MASS.
» Switch installation process to use updatedb.
* Introduce new queue processors

* Device-based licensing

Changes in Informer 5.9, since 5.8

Maximo Application Suite 8 support

https://support.interlocsolutions.com/projects/informer-server/wiki/Changelog

Installation
* Deprecate IRM dependency
Push Notification

* New Push Relay
e Utilize FCM HTTP v1 APIs

User Authentication

¢ Be able to use Maximo HTTP level user info for Informer session

Changes in Informer 5.8, since 5.7

Catalog Partitioning Strategies

» Catalog Partitions are now a first-class feature, with no performance tradeoffs

 Practical limits on Catalog size are now the practical limits on partition size. Across all partitions
in sum, total Catalog size is now practically unlimited.

Improved Queue Processor Configuration

* Informer Queue processor configuration has become simultaneously simpler and more
configurable

* Distribution through the cluster is now done via instance-specific Maximo Properties by default

Changes in Informer 5.7, since 5.6

Informer Queue Table Externalization

* Informer Queue activity can now optionally be isolated to a separate Database

» See External Queue Database Configuration
Enhanced Reconciliation UI

* When reconciling Catalogs, the user is prompted for more info as to what kind of changes are to
be audited for

» Using the non-default options can improve the performance of the reconciliation process

Changes in Informer 5.6, since 5.5.0

Catalog Partitioning feature

* Mutually-exclusive subsets for a Catalog can be tracked an synced with minimal setup,
automatic maintenance, and low overhead.

New Catalog Queue

* New queue has better performance and scaling characteristics

* New priority system helps long-running background work step aside for more timely changes

Changes in Informer 5.5.0, since 5.4
New Catalog API

* Greatly improved performance

» Stronger guarantees that the server will deliver all updates

Better handles interruption and resumption

Sufficiently-new Informer Clients on the app-side automatically recognize and use this new
Catalog synchronization API

* Alegacy mode continues to serve apps using older Informer Clients, without the benefits

Changes in Informer 5.4, since 5.3

New API on the NOTIFYPUB service allowing public and anonymous access to designated
commands and resources.

Performance improvements and bug fixes.

Changes in Informer 5.3, since 5.2

Maximo 7.6 support.
New multi-platform installer
Efficiency enhancements

Bugfixes

Changes in Informer 5.2, since 5.0

Catalog change evaluation architecture changed to use a queue instead of performing initial
evaluation on background thread . This allows catalog evaluation processing to be isolated to one or
more selected JVMs and prevents potential delays in processing if a large number of transactions
are performed on a single JVM.

Full catalog data set now tracked . This allows for the forced reevaluation of all catalog records for
active devices . The catalog can now be rebuilt in the case that data is loaded directly to the
database or if the where clause includes date based parameters.

Added SQLite database generation for download to the device for preloaded catalogs. This allows
supporting clients to download the database directly and skip the XML for the initial catalog load.

Added support for resources to be delivered to supporting clients . This allows images, documents,

and other application resources to be provided to the application directly.

Changed catalog listeners to be explicitly defined, if upgrading from a previous release the current
configuration will be automatically upgraded.

Added monitoring and tracking to allow for better record lifecycle tracking and queue performance
monitoring.

Added version installation tracking in the ISNOTIFYVERSION table.

Bug fixes and enhancements.

Supported Platforms

This page describes the supported platforms for Informer.

Platforms

e Maximo 7.6
* Maximo Manage 8

Operating System
All Operating Systems supported by Maximo

Database

* Oracle
» SqlServer

* DB2

Authentication

* Maximo Auth
« LDAP

e Custom

Configuration

* Standalone

e Clustered

Middleware
» WebSphere Application Server 7.0

» WebSphere Application Server 8.5
» WebSphere Application Server 9.0
* WebSphere Liberty Server 22
* WebSphere Liberty Server 23

Client Platforms
* Android 26.0+ (Oreo, API Level 26)

o Informer Android Client 3.0.0 or later is recommended to utilize all new Server features.
* i0S 11.0+

o Informer iOS Client 6.0.0 or later is recommended to utilize all new Server features.
* Windows 10 or later

o Informer Windows Client 2.1.5 or later is recommended to utilize all new Server features.

Installation

10

Obtaining Binaries

Installation binaries can be found on the downloads page for
https://support.interlocsolutions.com/projects/informer-server/files

Installer bundles can also be downloaded directly:
* http://files.mas.interloc.cloud/files/informer-bundle-linux-6.2.1.tar.gz

* http://files.mas.interloc.cloud/files/informer-bundle-windows-6.2.1.zip

Maximo 7.6

Informer

at

Installers are available for both Windows and Linux/AIX. Windows installers have a .exe file

extension, and Linux/AIX installers have a .run extension.

Informer Installers are available for Windows and Linux/AIX. Your choice of installer should be
determined by the OS of the system containing your SMP folder, not by the OS on which WebSphere

is running (if these are different systems).

The instructions and screenshots from here on will presume Windows by default, but should

remain functionally applicable for all supported systems.
You will need:

e An installer for Informer

* An installer for the Informer Push Relay (if using push messaging)

MAS Manage

Installer are available as Maximo Customization Archive

11

https://support.interlocsolutions.com/projects/informer-server/files
http://files.mas.interloc.cloud/files/informer-bundle-linux-6.2.1.tar.gz
http://files.mas.interloc.cloud/files/informer-bundle-windows-6.2.1.zip

Pre-Installation Checks

Pending Configuration Changes

The installation procedure applies any pending database configuration changes. Therefore, please
make sure that all pending database configuration changes have been applied prior to beginning
the Release Manager or Informer installation process.

DBSTORAGEPARTITION

Verify that the entries in ALNDOMAIN with domain id DBSTORAGEPARTITION are correct for the Maximo
environment, and that there are no extra entries. The Informer installation process will use these
entries to identify the Maximo database schema.

mxe.1int.webappurl

Ensure that the Maximo property mxe.int.webappurl is a valid URL to access the Maximo
application.

mxe.int.containerdeploy

For Maximo 7.5.0.%, the Informer installer only supports automatic deployment to the Product Web
Service Container. If you want the automatic web service deployment to occur the
mxe.int.containerdeploy property must be set to 0 (zero).

informer.condexp.group

The Informer installation assumes that a security group named EVERYONE exists for use in some
required conditional expressions. If your system does not include this security group, add a new
system property named informer.condexp.group and specify the global group that all users should
be part of.

Industry Solutions and Modules

If the target environment has the Oil & Gas Industry Solution or the Health, Safety Environment
Module installed it is necessary to check that each org-level object contains an associated ORGID
attribute and each site-level object contains an associated SITEID attribute. Without these attributes,
Maximo database configuration will fail and therefore the Informer installation will not complete.

12

ORGID attributes will need to be added for all objects returned from the following query:

select * from maximo.maxobject o

where SITEORGTYPE in ('ORG','SYSTEMORG','SYSTEMORGSITE', 'ORGSITE")

and o.objectname not in (select a.objectname from maximo.maxattribute a where
attributename = 'ORGID' and a.objectname = o.objectname);

SITEID attributes will need to be added for all objects returned from the following query:

select * from maximo.maxobject o

where SITEORGTYPE in ('SYSTEMORGSITE', 'ORGSITE")

and o.objectname not in (select a.objectname from maximo.maxattribute a where
attributename = 'SITEID' and a.objectname = o.objectname);

Leftover PMCOMSR Service

The PMCOMSR Maximo Service has not existed since Maximo 7.1. The official Maximo 7.5 upgrade
guide from IBM includes instructions to disable this Service during upgrade.

When this Service remains disabled, but not removed, the upgrade will be successful and database
migration will be possible. As long as it exists, however, even when disabled, it will cause Maximo
to fail validation whenever attempting to deploy any new "Standard Web Service" in Maximo.
Informer defines such services as part of its installation process, so this Maximo issue must be fixed
prior to Informer installation.

If this Service entry still exists in your Maximo 7.5+ instance, remove it entirely using the following

SQL:

DELETE FROM maxservice WHERE servicename = 'PMCOMSR';

Additional Checks During Upgrades

Not all upgrade paths can be anticipated or automatically corrected for, especially when old
data/state is the product of bugs since fixed.

If upgrading, please also conduct the appropriate checks and precautions linked below, to help
ensure a smooth upgrade.

Choose the most applicable document to match your current version:

* Appendix: Additional Pre-Installation Checks when Upgrading from Informer 5.5

* Appendix: Additional Pre-Installation Checks when Upgrading from Informer 5.3

13

* Appendix: Additional Pre-Installation Checks when Upgrading from Informer 5.2

* Appendix: Additional Pre-Installation Checks when Upgrading from Informer 4.x

14

Setup Phase for Maximo 7.6

Obtain Installation Binaries

At the time of this publication, the latest version of Informer was 6.0.0. This document presumes
that the version being installed matches this version or later.

Binaries can be downloaded from our support site at https://support.interlocsolutions.com/projects/
informer-server/files or may have been provided to you directly by an Interloc contact.

Informer and Push Relay are delivered in a single package to ensure that you always have
compatible versions as a set.

Application Server (JVM) Configuration

Disable SOAP Fault Unification
-Dwebservices.unify.faults=false

"SOAP fault unification" is a feature which is default-on in WebSphere 8, and is available but
default-off in some patch versions of WebSphere 7. This is intended to increase security by
stripping error information, but unfortunately also gets in the way of Informer’s internal functions
which rely on this information. This feature MUST be disabled for Informer Clients (i.e. apps) to
work properly. Apply the above parameter to any and all JVMs which could serve Informer
requests.

More information: https://www.ibm.com/support/knowledgecenter/SSLKT6_7.6.1/com.ibm.mif.doc/
wsregistry/t_config_ws_errors.html

Cluster Configuration

Informer was designed from the beginning to work well within a clustered Maximo environment.
This allows Informer to scale with your Maximo installation without the need to manage additional
software or systems. In a system of scale, however, a greater level of control is often desirable.
Information on how this can be accomplished can be found in the Recommended Infrastructure
section of this guide.

The installation and configuration process is the same for clustered and non-

NOTE clustered environments, so thorough consideration/optimization of your cluster
configuration can be deferred until after installation, if you wish.

15

https://support.interlocsolutions.com/projects/informer-server/files
https://support.interlocsolutions.com/projects/informer-server/files
https://www.ibm.com/support/knowledgecenter/SSLKT6_7.6.1/com.ibm.mif.doc/wsregistry/t_config_ws_errors.html
https://www.ibm.com/support/knowledgecenter/SSLKT6_7.6.1/com.ibm.mif.doc/wsregistry/t_config_ws_errors.html

Informer Installation

Performing the following steps will install the Informer binaries and web.xml configurations into
your SMP folder. The Interloc Mobile Informer Platform will install or upgrade itself in the selected
Maximo environment once the new EAR starts up.

Installation

Execute the informerserver-*.exe executable to start the installation, displaying the installation
welcome screen.

“ Setup \i/l =] |\g/

Setup - Interloc Mobile Informer

Welcome to the Interloc Mobile Informer Setup Wizard.

< Back | Next > | l Cancel

Click the Next button to continue with the installation.

 Setup \i/l (=] |\g/

License Agreement »

Please read the following License Agreement. You must accept the terms of this agreement
before continuing with the installation.

jurisdiction to be woid or unenforceable, it will not affect the A~
validity of the balance of the EULA, which shall remain walid and
enforceable according to its terms.

15. COUNTERPARTS. This Agreement may be executed in counterparts,
each of which shall be deemed an original (including copies reproduced
or transmitted by photocopy, facsimile transmission, portable document
format (pdf) or other process of complete and accurate reproduction
and transmission) as against the party signing such counterpart, but
which together shall constitute one and the same instrument.

am

Do you accept this § I accept the agreement%

license? "I do not accept the agreement

| <Back || Next> || cancel

16

The license agreement is displayed for review and acceptance . Click the"I Agree" button to accept
the license and then click Next to continue with the installation.

= Setup = E |£h
Installation Directory »
Please specify the directory where Interloc Mobile Informer will be installed.
Installation Directory C:\[BM\SMP|]
< Back H Next > H Cancel

Select the target Maximo installation’s parent SMP folder .

For example, if Maximo has been

installed to C:\IBM\SMP\maximo the destination folder should be C:\IBM\SMP . The installer validates
that you have selected a valid Maximo installation folder before allowing the installation process to

proceed.

Ready to Install

= Setup \i/l E] |\g/

-

Setup is now ready to begin installing Interloc Mobile Informer on your computer.

< Back H Next >

|

Cancel

The installation is now ready to run . Click the Next button to commence the installation.

17

= Setup | =] |&
Installing »

Please wait while Setup installs Interloc Mobile Informer on your computer.

Installing

Preparing to Install

< Back Next @ Cancel

The installer extracts the installation files to the target environment.

“ Setup \i/l =] |\g/

Completing the Interloc Mobile Informer Setup Wizard

Setup has finished installing Interloc Mobile Informer on your computer.

< Back I Cancel

When the installation is complete, the confirmation dialog is displayed . Click the Finish button to
complete the installation.

Execute informer-install.bat

Once the installer has completed, a script must be run to modify local XML.

18

Do you have alternative properties files?

By default, the informer-install.bat uses the database connection information
found in the maximo.properties file located at the following path.

WARNING o _ _ _ ,
../../applications/maximo/properties/maximo.properties

This default can be overridden by using the 0Op flag or --proppath switch,
followed by the path to the desired properties file.

Navigate to the <SMP>\maximo\tools\maximo subfolder of your IBM product installation folder. Enter
informer-install.bat, and press Enter to execute the command.

Details on what this script does can be found in Appendix: Informer Installer

NOTE .
Details

Run updatedb.bat

Once informer-install.bat has completed, the necessary database changes must be applied. Still
within the <SMP>\maximo\tools\maximo directory, enter updatedb.bat and press Enter to execute the
command.

Rebuild EARC(s)

Rebuild and redeploy any and all maximo.ear files, as you would for any other system configuration
change.

Bring everything Online
Start all JVMs in the Maximo system.

The next step is post-installation configuration.

19

Setup Phase for MAS Manage

Adding Customization Archive

* Obtain the Customization Archive zip file from https://support.interlocsolutions.com/projects/
informer-server/files.

» Upload the Customization Archive zip file to a hosting place.

o Alternatively, this URL http://files.mas.interloc.cloud/files/isinformer-mas-6.2.1.zip can be
used if no customization hosting exists.

o For MAS Manage versions earlier than 8.7, use http:/files.mas.interloc.cloud/files/
isinformer-mas8pre87-6.2.1.zip

20

https://support.interlocsolutions.com/projects/informer-server/files
https://support.interlocsolutions.com/projects/informer-server/files
http://files.mas.interloc.cloud/files/isinformer-mas-6.2.1.zip
http://files.mas.interloc.cloud/files/isinformer-mas8pre87-6.2.1.zip
http://files.mas.interloc.cloud/files/isinformer-mas8pre87-6.2.1.zip

Post-Installation Phase

Grant Security Access

The Informer platform is configured and administered via the Informer Developer and Informer
Administration applications respectively within Maximo.

When the application is initially installed, no security groups have access to the application. An
administrator needs to log in and grant access to the groups that should have access to the Informer
application.

Once access has been granted, the Informer Developer and Informer Administration applications
can be found on the Administration menu.

Review Cron Tasks

Informer introduces its own Cron Tasks, for automated maintenance of the Informer system. Some
of them are automatically configured with default instances, and some are not.

Please review the Appendix: Informer Cron Tasks section of this guide. The purpose of each Cron is
described, as are recommendations and requirements for instance configuration.

For the Crons configured with default instances (e.g. CatalogPreload), review their schedules to
determine whether this is compatible with your system load needs.

For the Crons without default instances (e.g. SessionPurge), consider whether this Cron is desirable,
and what parameters might be.

Review System Properties

An exhaustive list of Informer properties is included in the Appendix: Maximo Properties section of
this guide.

Most are highly conditional, applicable only in specific unusual cases. Some, far less so.

The following is a list of the most commonly relevant properties, which you could consider before
considering installation complete.

Take note of which of these values are live-refreshable in Maximo; Most are.

Storing Catalog XML

If Informer has just be installed in this system for the first time, you can skip this section.

Recent versions of Informer can serve Catalog data directly from stored XML. This is enabled by
default in 5.5.1, but existing installs may have an existing default to disable it.

This was formerly not enabled by default because the change would invalidate existing data and

21

synchronization state on devices. As of 5.5.1 this is no longer the case; The change is now seamless,
and invisible to devices and users. If upgrading from a previous version of informer, consider
enabling this property.

Enabling this behavior does come with an increased use of DB storage space, however the tradeoff
of storage cost is almost universally worthwhile because this setting greatly improves
synchronization performance, reduces load on primary MBO tables, makes synchronization more
reliable in general, and makes the system easier to debug.

Recommendation

1. Set the value of informer.catalog.xml.store to 1
2. "Live Refresh" this property

3. Reconcile all Catalogs on active Profiles (Do not worry about inactive Profiles; These will be
upgraded automatically upon activation, if this property is set.)

Push Relay URL

The informer.push.relayurl property identifies the path to the Push Relay WAR, covered in the
Informer Push Relay section of this guide. This property is how Informer knows where to reach the
relay.

Device Serial Number Update

The automatic updating of serial numbers is a feature meant to reduce the number of obsolete
device records when devices change IDs. This is primarily an issue on i0OS, which will get a new
app-specific serial number every time the app is uninstalled and reinstalled (as opposed to
upgraded).

In Informer 5.5, this problem is much better served by the DeviceCleanup Cron Task

Recommendation

1. Set the value of informer.update.serialnum.off to 1

2. Configure an instance of the DeviceCleanup Cron Task

22

Informer Configuration Guide

23

Informer License Installation

Once Informer has been installed a license must be provided before the application will be
functional.

Log into Maximo and navigate to the Informer application using the "Go To" menu:
Go To > Administration > Informer Developer
1. While on the List page, select License from the Select Action Menu

2. Paste the license information you received from Interloc in the text area provided, as shown
below

License

a Emter the complete license text provided in the box below.

“ersion:
Interloc Mobile Informer v5.3.0-dev-gecf8c T0-dev-gecfBa 70 F

<?xml version="1.0" encoding="UTF-8" standalone="yes" 7=
<license
#mins="http:lfwww. intedocsolutions. com/maximo/notify™=
<USErEoUnt~-1 <fusercount=
<development>true</development=
~ =<hash>LEUFERAC ooty GV 1 QOHRNOL A focoClseZy
PwibaGOatym2g LN OWL Box Y UH2y360/8kz 6 hnfixkzy 10
AUT2uF sesCaU4cXoZ6GMOkadBE000E +HAZdcWwelth
QIBKCOARTRNo COCCL F2VDDNEINcE LN I U Woalu Peg=

<fhash=>
<flicenses|

OK Cancel

3. Click OK to activate the license

Should additional licenses be purchased a new license will be provided. Updating the information
in this text area will update the available licenses within minutes.

24

Cluster Configuration

Recommended Infrastructure

Based on IBM recommended best practices it is recommended to create separate JVM clusters for
UI, MIF, CRON, and BROS (Reports). It is recommended when deploying Informer to define a fifth
type of JVM cluster, dedicated to queue processing and requests from mobile devices. The
recommended cluster configuration is based on IBM Knowledge Center — Configuring clustered
systems.

Task Purpose

Create a maximo.properties file for each cluster You create separate properties files so that each

that you want to deploy. cluster can have different settings. For a
dedicated Informer EAR, disable scheduled
reports with
mxe.report.birt.disablequeuemanager=0 and
crontask with mxe.crontask.donotrun=ALL

Create copies of the ejb-jar.xml file for each The ejb-jar.xml file and the ibm-ejb-jar-bnd.xmi
cluster that you want to deploy. If your file are modified to configure message-driven
deployment includes WebSphere Application beans for continuous queues. In an Informer
Server, you also need to create and edit copies of EAR, the MEA MDB sections should be

the ibm-ejb-jar-bnd.xmi file. commented out.

Create copies of the buildmaximoear.cmd file for =~ The buildmaximoear.cmd files are used to create
each cluster that you want to deploy. the individual EAR files for each cluster.

Build the EAR files. The EAR files for each cluster are built based on
the settings in the individual properties files,
ejb-jar.xml files, and the ibm-ejb-jar-bnd.xmi.

Create the clusters. The clusters are created by creating JVMs that
are members of the cluster.

Deploy the EAR files for the clusters. You deploy the EAR files on the application
server so that each cluster supports its dedicated
functions.

25

https://www.ibm.com/support/knowledgecenter/en/SSLKT6_7.6.1.1/com.ibm.mbs.doc/fm_sag/configsys/t_ctr_create_deploy_clusters.html
https://www.ibm.com/support/knowledgecenter/en/SSLKT6_7.6.1.1/com.ibm.mbs.doc/fm_sag/configsys/t_ctr_create_deploy_clusters.html

8

https://maximo/ https://maximomobile/ https://maximobros/
Ul CLUSTER INFORMER CLUSTER BROS CLUSTER MIF/CRON CLUSTER

Informer uses neither RMI nor JMS. When creating an Informer cluster, Informer

NOTE
JVMs should not run JMS queues (unlike other MIF JVMs).

Queue Processors

Informer was designed from the beginning to work well within a clustered Maximo environment.
This allows Informer to scale with your Maximo installation without the need to manage additional
software or systems. However, having control over how Informer operates in the cluster by limiting
the number of processing threads on a given node may be highly desirable. Informer will put
additional processing load on both database and application servers. Every Informer deployment
will be unique and it is recommended to perform load testing prior to deploying in production.

There are three primary types of queue processors: "Notification","Catalog", and "Push".

The number of each queue processor thread can be configured with these System/Instance
Properties:

Property Description Default Value
Name

informer.queu Specifies the level of concurrency for Notification queue 3
e.pool.notificati processing. A setting of "0" disables the Notification queue

on processors on the JVM.

informer.queu Specifies the level of concurrency for Catalog queue processing. A 2
e.pool.catalog setting of "0" disables the Catalog queue processors on the JVM.

informer.queu Specifies the number of "Push" queue processing threadstorun 1

e.pool.push on a specific JVM node. If this is set to "0" then no push queue
threads will run. NOTE: Any given node can have a maximum of
"1" push queue processor.

The default global properties specify each type of processor will run on any given JVM. This ensures

26

that single-JVM systems perform all required functions, and each added JVM will automatically spin
up its own processors to share the workload. In practice, however, deployments of scale will often
want to increase the level of concurrency (and therefore, the system resources) granted to the
Informer processors. Not all JVMs in a Maximo environment are equivalent, however, so Maximo’s
instance-specific property support can be used to create uneven distribution of work.

Upgrading?
* If you are upgrading from Informer 5.9.3 or earlier, the installation will convert
the old-style System Properties to these new styles. This applies to both global
and instance-specific property configurations.

It was once common to use JVM arguments to configure these pools, rather than
Maximo System Properties. Stored in WebSphere (as opposed to the Maximo
DB), these properties cannot be read by the installer JVM and therefore cannot
be automatically translated for other members of the cluster. After upgrade,
please review your JVM arguments, create equivalents in global and/or instance-
specific System Properties, and remove these legacy arguments. Henceforth, all
such configuration will occur in Maximo, not WebSphere.

NOTE

Notification Pool Configuration

The informer.queue.pool.notification property is specified as single numeric value that represents
the total number of processors.

When scaling up, the most effective number of processors depends on your Profile, users, and
environment.

Catalog Pool Configuration

The informer.queue.pool.catalog property is specified as a single numeric value that represents the
total number of processors.

Push Pool Configuration

The informer.queue.pool.push property is specified as a single numeric value. If using a Push
configuration, set this value to 1 on at least one JVM. If you are certain you will not use Push, you
can disable this globally by setting a value of 0.

27

Example 1. Dedicated Single JVM

Scenario: A clustered system which has a single dedicated Informer JVM, called INF1. Push

configurations are used by one or more Profiles in the system.

Property Instance-Specific?

informer.queue.pool.notificati
on

informer.queue.pool.catalog
informer.queue.pool.push

informer.queue.pool.notificati INF1
on

informer.queue.pool.catalog INF1

informer.queue.pool.push INF1

Example 2. Dedicated Cluster

28

Value

16

33

Scenario: A clustered system which has two dedicated Informer JVMs, called INF1 and INF2.
Push configurations are used by one or more Profiles in the system.

Property Instance-Specific?

informer.queue.pool.notificati
on

informer.queue.pool.catalog
informer.queue.pool.push

informer.queue.pool.notificati INF1
on

informer.queue.pool.catalog INF1
informer.queue.pool.push INF1

informer.queue.pool.notificati INF2
on

informer.queue.pool.catalog INF2

informer.queue.pool.push INF2

Value

0

15

33

15

33

Example 3. Reuse of Non-UI JVMs

Scenario: A clustered system which has no dedicated Informer JVMs. The UI JVMs should be
protected, but other JVMs in the system have a little bandwidth to spare. No Profiles in the
system use Push.

Property Instance-Specific? Value
informer.queue.pool.notificati 0
on

informer.queue.pool.catalog 0
informer.queue.pool.push 0
informer.queue.pool.notificati MIF1 6
on

informer.queue.pool.catalog MIF1 11
informer.queue.pool.notificati MIF2 6
on

informer.queue.pool.catalog MIF2 11
informer.queue.pool.notificati CRON1 12
on

informer.queue.pool.catalog CRON1 21

Example 4. Equal Distribution

Scenario: A clustered system which has no dedicated Informer JVMs, but just wants to share a
light load equally across all JVMs and see how that goes. Push configurations are used by one
or more Profiles in the system.

NOTE This is the same as default configuration, without applying any changes.
Property Instance-Specific? Value
informer.queue.pool.notificati 3
on
informer.queue.pool.catalog 2

informer.queue.pool.push 1

Example 5. Minimal Maximo System

Scenario: A single-JVM system which needs to accelerate Informer processing. Push
configurations are used by one or more Profiles in the system.

Property Instance-Specific? Value
informer.queue.pool.notificati 21

on

informer.queue.pool.catalog 22
informer.queue.pool.push 1

30

LDAP Configuration

The Informer Server responds to the app via Maximo web services. One of the most important
services is login where Informer authenticates and authorizes the user to make an appropriate
response for that request.

The Authenticator class Informer uses to conduct authentication is configurable/replaceable if
there is a need, but the default ones provided with the product cover most cases. By default,
Informer is configured to authenticate against the Maximo user database. If Maximo is delegating
authentication to LDAP, Informer must be told how to do the same. All relevant settings are
specified using Maximo System Properties, all of which can be live-refreshed for near-immediate
effect in a live system.

Mandatory Properties

The configured Informer Authenticator should be switched from the default
"MaximoAuthenticator" to the "LDAPAuthenticator”. All other properties mentioned in this
document are configuration parameters for this new authenticator.

informer.authenticator =
"com.interlocsolutions.maximo.notify.security.LDAPAuthenticator"

The default LDAP Context implementation is provided by WebSphere. We recommend changing
this to one provided by the JDK, instead.

informer.security.ldap.context.factory = "com.sun.jndi.ldap.LdapCtxFactory"

The value of informer.security.ldap.authtype should always be simple; SASL is not supported in this
implementation.

The informer.security.ldap.url property identifies the path to your LDAP server, including
protocol and port number.

Authentication Strategies

When authenticating via LDAP via the simple strategy, a (DN, password) pair is used. Maximo login
uses a simple "loginid", however, not a DN, so it is typically necessary to run an LDAP search to find
the user’s DN.

Method 1: Authenticated User Lookup

In this setup, the authenticator will bind first as a service account, and use that connection to find
the user’s DN.

To provide credentials for the service account (lookup user), the
informer.security.ldap.lookup.user and informer.security.ldap.lookup.password properties are

31

used.
The base DN for the search can be specified using the informer.security.ldap.search.path property.

Within the search context (with base DN as the root), some search criteria must be used to find the
appropriate record in the directory. Use the informer.security.ldap.search.pattern property to
specify the LDAP search filter, using {0} as a placeholder for whatever loginid is being
authenticated.

LDAP supports multiple kinds of search scopes which can be declared, defining how deep the
search traversal should go. The default is SUBTREE, but 0BJECT and ONELEVEL can also be specified.

For example, one such configuration might look like this:

informer.security.ldap.context.factory = "com.sun.jndi.ldap.LdapCtxFactory"
informer.security.ldap.searchbase = ""

informer.security.ldap.authtype = "simple"

informer.security.ldap.url = "ldaps://ldap.example.org:636"
informer.security.ldap.lookup.user = "cn=myserviceacc,ou=Users,dc=example,dc=org"
informer.security.1ldap.lookup.password = "agoodpassword"
informer.security.ldap.search.path = "ou=Users,dc=example,dc=org"
informer.security.ldap.scope = "SUBTREE"

informer.security.ldap.search.pattern = "uid={0}"
informer.security.ldap.user.pattern = ""

For more info on subjects like "search base DN", "search filter", or"search scope", documentation
can be found here: https://ldap.com/the-ldap-search-operation/

Method 2: Anonymous User Lookup

Some LDAP servers can be configured to allow unauthenticated searches of the directory. The
LDAPAuthenticator does not currently support unauthenticated search. You can try to use the
Method 3 defined below, if applicable, or else define a service account for use by Informer (even if
this is not strictly necessary) for use in Method 1.

Method 3: User DN Pattern Shortcut

In the case that the loginid appears as part of the user DN, and all users to authenticate are siblings
at the same level in the hierarchy, a DN pattern can be specified to skip the user lookup search
entirely by transforming a loginid directly into a user DN.

The symbol {0} is once again used a placeholder for whatever loginid is being authenticated.

32

https://ldap.com/the-ldap-search-operation/

informer.
informer.
informer.
informer.
informer.
informer.
informer.
informer.
informer.

informer

security.
security.
security.
security.
security.
security.
security.
security.
security.
.security.

1dap.
1dap.
1dap.
ldap.
1dap.
1dap.
1dap.
ldap.
ldap.
1dap.

context.factory = "com.sun.jndi.ldap
searchbase = ""

authtype = "simple"

url = "ldaps://1dap.example.org:636"
lookup.user = ""
lookup.password =
search.path = ""
scope = ""
search.pattern =

.LdapCtxFactory"

user.pattern = "uid={0},ou=Users,dc=example,dc=o0rg"

33

Optional Tools and Components

These elements are not part of the directed installation guide, but are worth knowing about and
considering when planning or reviewing an Informer installation.

34

Informer Push Relay

Does This Apply To Me?

The Push Relay is required only when using a "push" configuration for data update
notification.

Use of a push configuration is generally recommended for responsiveness, but it does require
communication with Apple or Google servers and this is not practical for all customers and all
contexts.

By default, all Informer apps can handle a configuration with or without a push configuration,
but a push configuration can serve as an accelerator to improve time-to-delivery of updates.

Apple and Google each provide native push services, APNS and GCM respectively, and Informer can
be configured to work with these services. However, these services rely heavily on digital
certificates that are incompatible with the IBM Java SDK runtime which the WebSphere version
that Maximo deploys to uses. To allow these services to be used by Informer a small relay services is
utilized, which runs with a 1.17-compatible Oracle Java SDK runtime.

System Requirements

Push Relay installers are available for Windows and Linux, but can also be deployed manually to
any compatible Servlet container that supports JAX-RS . The WAR file for deploying to a non-
Windows environment can be obtained by running the installer then copying the push.war file
found in the <push_home>\webapps\push.war in Windows, or
/opt/pushrelay/informer/webapps/push.war in Linux or AIX.

Obtaining Binaries

The Informer Push Relay is distributed as part of the bundled Informer installation downloads.
Install (or upgrade to) the version of the Push Relay which comes alongside the primary Informer
installer. Informer installation bundles can be found on the downloads page for Informer:
https://support.interlocsolutions.com/projects/informer-server/files

Installers are available for both Windows and Linux/AIX. Windows installers have a .exe file
extension, and Linux/AIX installers have a .run extension. Choose the version which matches your
target system. The instructions and screenshots from here on will presume Windows by default,
but should remain functionally applicable for all supported systems.

If there is an older Push Relay already installed (5.6.1 or earlier), the previous

WARNING
one needs to be uninstalled first.

Installation

Execute the push-relay-*.exe executable to start the installation.

35

https://support.interlocsolutions.com/projects/informer-server/files

= Setup \i“ =] Hﬂ

Setup - Informer Push Relay

Welcome to the Informer Push Relay Setup Wizard.

< Back Next > | l Cancel

Click the Next button on the welcome screen to continue with the installation.

* Setup = B
Installation Directory »
Please specify the directory where Informer Push Relay will be installed.

e BT W=t (o]3I C:\ Program Files\Informer Push Relay e
< Back H Next > H Cancel

Select an installation folder, or leave the default and click the Next button.

36

Ready to Install "

Setup is now ready to begin installing Informer Push Relay on your computer.

InstallBuilder

< Back l | Next > | l Cancel

Click the Next button to commence the installation.

Please wait while Setup installs Informer Push Relay on your computer.

Installing
Unpacking C:\Program [...]isp\org.mortbay.jasper.apache-el-8.0.9.M3 jar

L | ||

InstallBuilder

< Back “ Next > |l Cancel

37

" Setup \i“ =] |\ﬁ

Completing the Informer Push Relay Setup Wizard

Setup has finished installing Informer Push Relay on your computer.

< Back i Cancel

Click the Finish button to complete the installation.

Verification

To verify that the push relay was installed correctly, open your browser and navigate to
http://<hostname>:8080/push/verify where <hostname> is the name of the server that the relay
service was installed on.

If everything was successfully installed, a page should be displayed stating

The Interloc Mobile Informer Push Relay is running version x.y.z.

Configuration

Set Maximo System Property

Set the value of informer.push.relayurl to http://<hostname>:8080/push where <hostname> is the
name of the server that the relay service was installed on.

Apply Firewall Settings

The Informer push notifications rely on the native push frameworks provided by Apple and Google
to work efficiently and effectively . This however, does require Maximo to communicate with
servers operated by Apple and Google so that push notifications can be sent, and for devices
operating on a Wi-Fi network, received.

Configuring for APNS (Apple/iOS)

When using Apple Push Notification Services (APNS) TCP communication must be available

38

http://<hostname>:8080/push/verify
http://<hostname>:8080/push

outbound on port 2195 and must be available inbound on port 5223.

The IP addresses used are less clearly defined. At the time of this writing, Apple had this to say:

The APNs servers use load balancing, so your devices don’t always connect
to the same public IP address for notifications. It’s best to let your device
access these ports on the entire 17.0.0.0/8 address block, which is assigned to
Apple.

https://support.apple.com/en-us/HT203609

Configuring for GCM (Google/Android)

When using Google Firebase Messaging (FCM) TCP communication must be available on ports 5228,
5229, and 5230 . Google states that most communication will occur on port 5228, but there are times
when ports 5229 and 5230 are used.

The IP addresses used are less clearly defined. At the time of this writing, Google had this to say:

For outgoing connections, FCM does not provide specific IPs because our IP
range changes too frequently and your firewall rules could get out of date
impacting your users’ experience. Ideally, you will whitelist ports 5228-5230
with no IP restrictions. However, if you must have an IP restriction, you
should whitelist all the IP addresses in the IPv4 and IPv6 blocks listed in
Google’s ASN of 15169. This is a large list and you should plan to update
your rules monthly. Problems caused by firewall IP restrictions are often
intermittent and difficult to diagnose.

https://firebase.google.com/docs/cloud-messaging/concept-options#
ports_and_your_firewall

39

https://support.apple.com/en-us/HT203609
https://ipinfo.io/AS15169
https://firebase.google.com/docs/cloud-messaging/concept-options#ports_and_your_firewall
https://firebase.google.com/docs/cloud-messaging/concept-options#ports_and_your_firewall

Informer Server Check Utility

The Informer Server Check is a utility that executes some basic checks against the Informer
installation.

Informer Server Check is installed as part of the Informer Tools package, which can be installed by
unzipping informer-tools-5.2.0.zip

The Tools can be found alongside the Informer installation binaries:
link:https://support.interlocsolutions.com/projects/informer-server/files

Informer Server Check can be run via the servercheck.bat file in the extracted directory.

You can run the Informer Server Check from any machine with a Java 1.6 or later runtime that has
connectivity to the Informer Maximo environment.

To run the Informer Server Check utility, execute the following at a command prompt:

> servercheck.bat

Configuring the Tool

Configuring via Properties File

servercheck.properties is a self-documented file with the list of parameters you can use, with
reasonable defaults and comments. Modify this file to fit your environment, save the file, and run
the .bat or .sh script again.

40

BEHHHHHHH 11

##t Server host info

BUBHHHHHHH B 1111111

Set ssl=true if your Maximo URL starts with https://

host=1ocalhost

ssl=false

port=80

meapath=/meaweb/

#

BUHHHHHHHHH 111111

Maximo/Informer Credentials

BUBHHHHHHHHH 11111 #

These can be omitted to skip the login step

If the password is omitted, but the user specified, the user will be prompted in the
terminal

These are used to log into Informer, but will also be used to resolve 401
challenges.

user=wilson

password=wilson

BUHHHHHHHH G111

Informer Profile

BUBHHHHHHH G111 111

The Profile name determines which Informer Profile to log into

This will only be used if a user is specified; Otherwise, no login attempt is made
profile=INFORMERTESTING

MR

Maxauth Credentials

BEHHHH S

The maxauth parameters are used if you use "native security" on the MIF
http://www-01.1ibm.com/support/docview.wss?uid=swg21575076

This is not particularly common. Do not mistake this for AD/LDAP security
MAXAUTH authentication is only enabled if maxauth=true

maxauth=false

maxauthuser=miller

maxauthpassword=miller

BUBHHHHHHHHHH 11111 #

Verbosity

BUHHHHHHHBHEH 11111 H

The verbosity flag increases the amount of data written to the terminal.
This information is can be useful in the case of an error, but is very "busy" and
more difficult to interpret.

Please set this flag and rerun your test, if seeking support.
verbose=false

Command Line Interface (CLI)

Everything can be accomplished using only the properties file, but the command line flags can be
more useful for those most comfortable in CLIs.

41

Any flag specified via the CLI will supersede any default set in the properties file.
To use the CLI exclusively, delete or rename servercheck.properties

The Informer Server Check takes the following parameters:

Usage: servercheck.bat (-h|--host) <host> [(-n|--port) <port>] [(-u|--user) <user>]
[(-p|--password) <password>] [(-f|--profile) <profile>] (-m|--meapath) <meapath> [-
1|--ss1] [-a|--acceptallsslcerts] [--maxauth] [--maxauthuser <maxauthuser>] [--
maxauthpassword <maxauthpassword>] [-v|--verbose]

(-h|--host) <host>
The maximo host name.

[(-n|--port) <port>]
The maximo port number.

[(-u|--user) <user>]
The informer user name.

[(-p|--password) <password>]
The informer user password.

[(-f|--profile) <profile>]
The informer profile.

(-m|--meapath) <meapath>
The mea web path. (default: /meaweb)

[-1]--ss1]
Connect using SSL

[-a|--acceptallsslcerts]
Accept all SSL certificates (Ignore SSL validation errors)

[--maxauth]
Use MAXAUTH authentication. This is used when 'mxe.appServerSecurity' is
not used on the server. When this flag set, a special HTTP header is
added.

[--maxauthuser <maxauthuser>]
The maxauth user name.

[--maxauthpassword <maxauthpassword>]
The maxauth password.

[-v|--verbose]
Verbose mode

42

Basic Version Check

Execute the utility specifying only the —host parameter. This will connect to the Informer service
and display the Informer version number.

> servercheck.bat -h 192.168.253.10

Parsing arguments

Using URL: http:// 192.168.253.10:80/meaweb/services/NOTIFY
Performing Version Check

Server Version: 5.3.0
Checks Complete

Login and Profile Access Check

This check requires a profile to be created and a user given access to that profile.

For example, to verify a profile named INFORMERTESTING with a user name of wilson and a
password of wilson:

> servercheck.bat -h localhost -f INFORMERTESTING -u wilson -p wilson
Using java executable in PATH

Parsing arguments
meapath: /meaweb/

Using URL: http://localhost:80/meaweb/services/NOTIFY
Performing Version Check

Response Code was 200

Server Version: 5.5.0-hf11

Performing Login Check

Response Code was 200

Login Result: true

Session Id: 42d597b5-3db2-4242-a3a4-3366ea981a11
Performing Registered Profiles Check

Response Code was 200

Registered Profiles:

INFORMERTESTING

Logging Out

Response Code was 200

Checks Complete

43

External Queue Database Configuration

By default, Informer depends on persistent job queues to route, schedule, and distribute system
events and background work. These queues are important for day-to-day operation, but their high
rate of change can sometimes burden backup strategies.

As of Informer 5.7.0, it is possible to divert Informer queues and associated tables to a separate
database or instance, removing their activity from the main Maximo database.

Why?

Maximo data is generally long-lived and slow-moving. The Maximo data must always be
recoverable, and backups are a necessary part of administration. Changes need to be captured and
should be replayed into pre-production environments.

Informer queue data, by contrast, is generally short-lived and fast-moving. The data can be
regenerated if lost, so backups and data migrations are unnecessary.

These Informer queue tables (and associated tables) are defined as MBOs, and these queue MBOs
are used as the default queue persistence mechanism. This reduces the administrative overhead
and simplifies the infrastructure considerations for many, and is a reasonable default. The
downside of this default is that Informer queue tables are generally backed up and logged with the
rest of the Maximo data, and this can become a burden for some customers.

By moving these queue tables to a different database instance, that instance can be selected, tuned,
configured, and/or isolated to better suit their high-volatility use case (for example, by disabling
backups).

Choosing a Database

Any of the following databases can be used for a standalone Informer queue schema:

e Oracle

* Microsoft SqlServer

IBM DB2

MySQL / MariaDB

PostgreSQL

The database type you choose does not need to match the database type you are using for Maximo.

MySQL / MariaDB

If you want to separate the workload from your existing infrastructure completely, or generally to
use a more simplistic (if less familiar) option, MySQL can be used. It is a well-known and well-
supported free solution for use on a standalone server.

On Ubuntu 18.04, for example, getting a simple MySQL instance takes little more than

44

sudo apt install mysql-server mysql-workbench

And the Informer DB can be created within minutes using the "MySQL Workbench" app which that
command installed.

General administration of MySQL is outside the scope of Informer documentation and support, but
for those comfortable with the idea of adding a new database type to their infrastructure, MySQL
can be a good option.

See Appendix: Using an external MySQL Database for Informer Queues

PostgreSQL
PostgreSQL is now also supported, with similar considerations as with MySQL.

See Appendix: Using an external PostgreSQL Database for Informer Queues

Oracle, SQLServer, DB2

If you want to leverage your existing infrastructure and in-house expertise, or for the sake of
familiarity and consistency, you may choose to use the same DB type you are using for Maximo. All
three choices of DBMS supported by core Maximo are also supported by Informer.

See Appendix: Using an external Oracle Database for Informer Queues
See Appendix: Using an external SqlServer Database for Informer Queues

See Appendix: Using an external DB2 Database for Informer Queues

45

Appendix

The remaining content is provided for reference purposes, and is not part of the directed
installation guide.

46

Appendix: Maximo Properties

System Properties

Declared Properties

The following Maximo System Properties will be added as part of the first start-up. Default values
will be provided, but should be reviewed based on the environment.

Property
Name

informer.a
pns.sandbo
X

informer.a
ttacheddoc
ument.pro
vider

informer.c
atalog.que
ue.JobDisp
atcher

informer.c
atalog.que
ue.JobFact

ory

informer.c
atalog.que
ue.commit
batchsize

informer.c
atalog.que
ue.softcap

Description

Should the system use
the Sandbox APNS push
system.

The fully qualified class
name of the document
provider.

Customizable
implementation of
Catalog job dispatcher

Customizable
implementation of
Catalog job factory

The number of
commits to make in one
go when expanding
aggregate Catalog jobs.

The number of records
to aim for in the catalog
refresh queue.

Default
Value

0

com.interl
ocsolutions
.maximo.n
otify.queue
.db.JobDisp
atcherDBI
mpl
com.interl
ocsolutions
.maximo.n
otify.queue
.db.JobFact
oryDBImpl

500

-1

Comment

If the Apple Push Notification Service (APNS) is
being used for i0S devices, and this is a
development environment, this should be set to
true. This will route the push notifications
through Apple’s sandbox (development) servers
instead of the production servers. If the value of
this property is something other than true, or
the property does not exist the production APNS
servers will be used.

The Job Dispatcher represents a policy on the
"where", "when", and "who" of Catalog

evaluation.

The Job Factory represents a set of definitions of
the "what" and "how" to evaluate Catalog
evaluation, independent of "where", "when",

and"who".

When set to -1, no cap is enforced. See also:
informer.catalog.queue.softcap.wait

47

Property
Name

informer.c
atalog.que
ue.softcap.
wait

informer.c
atalog.que
ue.orderin
g (5.5.1+)

informer.c
atalog.xml.
store

informer.c
ompressio
n.threshol
d

informer.c
reateasset

informer.c
reateasset.i
tem

informer.c
reateasset.l
oc

informer.c
reateasset.
site

informer.c
reateasset.
status

informer.c
reatesrtype

informer.d
eploy.com
mtemplate

48

Description Default
Value

The duration in 18000

milliseconds to wait

between checks of the

catalog queue size.

Ordering of Catalog priority

jobs. Valid options
include " priority’,

*fifo', and “none'.

Flag to enable caching 0
of Catalog data at
evaluation time, for use
during delivery

The message size in 4096
bytes before a message

should be compressed.

Create an asset for each 0
device that registers
with Informer.

Rotating item number
to create new Informer
device assets with.

The location where
new Informer device
assets will be created.

The site that the asset
will be created.

The status that new
Informer device assets
will be created with.

The SR type that the SR
service request should
be created as.

Communication
template to use when
sending application
links.

Comment

Only relevant when
informer.catalog.queue.softcap is enabled (>0).

“priority' is recommended for system health,
but "none' can sometimes be faster if that is
your sole concern

If this is not set or is not present then the default
value of 4096 is used.

If this value is set then informer.createasset.loc
and informer.createasset.site should also be
provided at a minimum so that asset can be
created, assets can only be created in one site
and location and can then be moved later by an
administrator.

This is optional and only required if the asset
should be created as a rotating item.

This defines the type of service request that will
be created, this may be an Incident or other
server type.

If not set then the default template"INFORMER"
will be created and used.

Property
Name

informer.d
octype.aut
ocreate

informer.e
ventfilter

informer.f
alse.value

informer.g
etattached
document.
validator

informer.ig
noreLogin
Case

informer.la
ng.whitelis
t.csv
(5.5.1+)

informer.l
bs.populat
e

informer.l
ogin.recov
ery.commt
emplate

informer.
max.Queue
BatchSize

informer.n
otify.xml.i
ncludecom
manddata

Description

Auto create document
types.

Customizable
implementation of
FilterFactory to apply
to Informer-related
data MBO events

The value that will be
returned for false
boolean values.

GetAttachedDocument

Validator classname for

Informer sessions

Informer will ignore
case on login
credentials.

A comma-separated list

of language codes
Informer should
support. If blank, all
are supported.

Populate the LBS
Location table.

The email login
recovery
communication
template.

Default
Value

1

com.interl
ocsolutions
.maximo.n
otify.filter.
BaseFilterF
actory

0

0

The maximum number 100

of tasks a queue
processor will claim at

time before processing.

Flag to include
Command data in
Notification XML

Comment

If this is set then document types for incoming
attached documents will be created if the
document type does not exist.

This setting only affects Informer’s case
insensitivity. The actual authentication
mechanism (e.g. LDAP) must also be case-
insensitive for this setting to have an effect.

If some language are used in the broader
Maximo system, but are not used in Informer
applications, Informer efficiency can be
improved by specifying only the ones in use,
allowing Informer to skip the others.

This is an upper bound on a random range.
Batching reduces contention among processing
threads when using the Database-backed queues
(ISNOTIFYREFRESHQUEUE and
ISCATALOGREFRESHQUEUE)

This is an uncommonly-used feature. Enabling it
has some performance tradeoffs.

49

Property
Name

informer.o
nerror.cre
atesr

informer.o
nerror.wfp
rocess

informer.p
regen.maxt
hreads

informer.p
ublic.getatt
acheddocu
ment.valid
ator

informer.p
ublic.group

informer.p
ublic.sendf
ile.allowed
FileExtensi
ons

informer.p
ublic.sendf
ile.validato
r

informer.p
ublic.site

informer.p
ush.relayu
rl

50

Description

Create a new service
request when an
Informer client error
occurs.

The workflow process
name to launch after
creating the SR.

The maximum number
of threads to run when
pregenerating a
catalog.

GetAttachedDocument
Validator classname for
public Informer
sessions

The group that public
registered users will be
placed in.

Specified class defined
allowed file extensions
for public/anonymous

sessions

The classname of the
validator to use for files
sent via
public/anonymous
Informer sessions

The default insert site
for new public users.

The relay server for
push messages.

Default
Value

0

2

EVERYONE

jpg.png.gif,
mp4,mov,
m4v,pdf,do
c,docx,xls,x
Isx,ppt,ppt
x,xml,
txt,csv

com.interl
ocsolutions
.maximo.n
otify.securi
ty.datavali
dator.Infor
merAllowe
dExtension
sValidator

http://local
host:8080/
push

Comment

This will automatically create an SR every time
an error occurs. This should be used in
conjunction with the informer.onerror.wfprocess
property to ensure that errors are identified as
the error will no longer be displayed in the
Informer application.

If this is blank or if the workflow process named
does not exist then the SR will be created but it
will not be routed anywhere.

The Push Relay installer installs a Windows
Service with a Jetty server running on port 8080.

http://localhost:8080/push
http://localhost:8080/push
http://localhost:8080/push

Property
Name

informer.q
uery.owne
rs

informer.q
ueue.logEr
ror

informer.q
ueue.maxe
rror

informer.q
ueue.pool.c
atalog

informer.q
ueue.pool.
notificatio
n

informer.q
ueue.pool.
push

informer.q
ueueMonit
or.refreshl
nterval

informer.r
eport.defa
ultprinter

informer.s
ecurity.lda
p-servers

informer.s
ecurity.lda
p-authtype

Description Default

Value

A comma delimited list
of users whose private
queries may be used.

Flag to force logging of 0
all queue errors.

The maximum number 5
of retries for a failed
queued item.

Allows a different value 2
to be set for catalog
queue processors.

Allows a different value 3
to be set for the
notification queue
processors.

Specifies the number of 1
push queue processing
threads to run on a
specific JVM node.

The interval at which 10
the queue monitors
refresh in seconds.

The default printer to
print reports

The number of Idap 1
servers to check for
authentication.

The type of simple
authentication to use.

Comment

The refresh queue processors handle most
errors and retry automatically. If an error is
encountered that is unexpected, this dictates the
maximum number of times it will retry before
marking the record in error.

See Cluster Configuration

See Cluster Configuration

See Cluster Configuration

Raise this value reduces database hits, at the cost
of UI responsiveness in the Monitor dialog of the
Informer Develop and Informer Administration
Maximo Applications.

If the value is greater than 1, then the "ldap”
portion of the informer.security.ldap properties
will include the server number. For example,
with 2 servers:
informer.security.ldap.lookup.user,
informer.security.1ldap2.lookup.user.

Used by the Informer’s provided
LDAPAuthenticator implementation (not
enabled by default)

31

Property Description Comment

Name

informer.s The fully qualified Used by the Informer’s provided
ecurity.lda connection factory LDAPAuthenticator implementation (not
p.context.f class name. enabled by default)

actory

informer.s Password for the Used by the Informer’s provided
ecurity.lda lookup user. LDAPAuthenticator implementation (not
p-lookup.p enabled by default)

assword

informer.s The lookup user DN. Used by the Informer’s provided
ecurity.lda LDAPAuthenticator implementation (not
p-lookup.u enabled by default)

ser

informer.s The scope of the search: Used by the Informer’s provided
ecurity.lda SUBTREE, OBJECT, LDAPAuthenticator implementation (not
p-scope ONELEVEL enabled by default)

informer.s The LDAP search path. Used by the Informer’s provided
ecurity.lda LDAPAuthenticator implementation (not
p-search.pa enabled by default)

th

informer.s The user search Used by the Informer’s provided
ecurity.lda pattern, such as uid={0} LDAPAuthenticator implementation (not
p-search.pa enabled by default)

ttern

informer.s The full URL, including Used by the Informer’s provided
ecurity.lda protocol and port for LDAPAuthenticator implementation (not
p-url the LDAP server. enabled by default)

informer.s A pattern for Used by the Informer’s provided
ecuritylda performing a simple LDAPAuthenticator implementation (not
p-user.patt username replace bind. enabled by default)

ern

informer.s The base path for Used by the Informer’s provided
ercurity.ld performing searches. LDAPAuthenticator implementation (not
ap.searchb enabled by default)

ase

informer.s The timeout value in 10
ession.time minutes for Informer
out sessions

Defaults to 60,000 milliseconds or 10 minutes. If
this property is not set or not present the 10
minute default is still used.

informer.st Indicates if Informer is false
ats tracking statistics.

Global toggle for Informer statistics.

32

Property
Name

informer.st
ats.catalog

informer.st
ats.notifica
tion

informer.st
ats.push

informer.st
ats.retrieva
1

informer.st
opOnRMIS
hutdown

informer.s
ystem.depl
oy.templat
e

informer.s
ystem.depl
oy.url

informer.tr
ue.value

informer.t
wilio.accou
ntsid

informer.t
wilio.autht
oken

informer.t
wilio.from
phone

informer.t
wilio.login.
recovery.m
S8

Description

Indicates if Informer is
tracking statistics for
catalogs.

Indicates if Informer is
tracking statistics for
notifications.

Indicates if Informer is
tracking statistics for
push notifications.

Indicates if Informer is
tracking retrieval
times.

Flag to indicate the
system should stop on
RMI loss.

Communication
template for deploying
applciations.

The full URL minus the
application name for
the deployment URL.

The value that will be
returned for true
boolean values.

The Twilio account SID.

The Twilio
authentication token.

The Twilio from phone
number.

The message that will
be sent from Twilio for
login recovery, must
contain {0} for
replacement.

Default
Value

true

true

true

true

INFORMER

Comment

Toggle for Catalog statistics. Only takes effect
when informer.stats is true.

Toggle for Notification statistics. Only takes
effect when informer.stats is true.

Toggle for Push statistics. Only takes effect when
informer.stats is true.

Toggle for data retrieval statistics (observations
to delivery). Only takes effect when
informer.stats is true.

Recent versions of Informer are not dependent
on RMI.

If not set then the current application URL will
be used when the deployment email is sent, this
allows that to be overridden to provide a public
or other URL to access the application download.

The value Informer understands to represent
truth. This is a reflection of Maximo’s YORN
abstraction. Expected values are 1 or "true".

33

Property
Name

informer.t
wilio.verif

y.msg

informer.u
pdate.seria
Inum.off

informer.v
erification.
commtemp
late

informer.c
atalog.que
ue.QueueP
rocessor

54

Description Default
Value

The message that will
be sent from Twilio for
verification, must
contain {0} for
replacement.

Turns off serial number 0
update if true

The email verification

communication

template.

Specifies the catalog com. iﬂt(_erl

queue processor to use. °¢S0Ut1oN
s.maximo.n
otify.queu
e.db.BulkB
yJvmCatalo
gJobQueueP
rocessor

Comment

The automatic updating of serial numbers is a
feature meant to reduce the number of obsolete
device records when devices change IDs. This is
primarily an issue on i0OS, which will get a new
app-specific serial number every time the app is
uninstalled and reinstalled (as opposed to
upgraded). As of Informer 5.5, it is
recommended to simultaneously set

Possible options are:
com.interlocsolutions.maximo.notify.queue.cata

log.DisabledCatalogJobQueueProcessor,
com.interlocsolutions.maximo.notify.queue.db.B

ulkByThreadCatalogJobQueueProcessor,
com.interlocsolutions.maximo.notify.queue.db.B

ulkByJvmCatalogJobQueueProcessor Disabled
means disabled. BulkByThread is the old
behavior where many threads on each JVM
attempt to claim records to process. This can
lead to deadlocks. BulkByJvm is the new
behavior where a single thread reads records
from the queue and passes them off to separate
worker threads.

Property Description
Name

informer.n Specifies the
otification. notification queue
queue.Que processor to use.
ueProcesso

r

informer.p Specifies the push

ush.queue. queue processor to use.

QueueProc
essor

informer.u Class to map a user
serldentifi identifier to a Maximo
er user account.

informer.a Unique identifier that
uthenticato represent the user’s
r.oidcuniq login id in OIDC
ueidentifie userinfo.

r

Default
Value

com.interl
ocsolution
s.maximo.n
otify.queu
e.notifica
tion.BulkB
yJvmNotifi
cationJobQ
ueueProces
sor

com.interl
ocsolution
s.maximo.n
otify.push
.BulkByJvm
PushJobQue
ueProcesso
.

com.interl
ocsolution
s.maximo.n
otify.secu
rity.Defau
1tUserIden
tifier

email

Comment

Possible options are:
com.interlocsolutions.maximo.notify.queue.noti

fication.DisabledNotificationJobQueueProcessor,

com.interlocsolutions.maximo.notify.queue.noti
fication.BulkByThreadNotificationJobQueueProce

ssor,
com.interlocsolutions.maximo.notify.queue.noti
fication.BulkByJvmNotificationJobQueueProcesso

r Disabled means disabled. BulkByThread is the
old behavior where many threads on each JVM
attempt to claim records to process. This can
lead to deadlocks. BulkByJvm is the new
behavior where a single thread reads records
from the queue and passes them off to separate
worker threads.

Possible options are:
com.interlocsolutions.maximo.notify.push.Disab

ledPushJobQueueProcessor,
com.interlocsolutions.maximo.notify.push.BulkB

yThreadPushJobQueueProcessor,
com.interlocsolutions.maximo.notify.push.BulkB

yJvmPushJobQueueProcessor Disabled means
disabled. BulkByThread is the old behavior
where many threads on each JVM attempt to
claim records to process. This can lead to
deadlocks. BulkByJvm is the new behavior
where a single thread reads records from the
queue and passes them off to separate worker
threads.

The specified class must implement
com.interlocsolutions.maximo.notify.security.U

serIdentifier. This class supposes to find
Maximo’s USERID by app provided username. The
default class is looking up Maximo’s USERID by
Maximo LOGINID(User Name).

In case of using 0IDCAuthenticator, it will be used
to find user identity from OIDC userinfo
endpoint which needs to be match with user’s
login ID that app will provide.

55

Property Description Default Comment

Name Value

informer.a Unique identifier the In case of using 0IDCAuthenticator, it will be used
uthenticato OIDC userinfo endpoint if we want to Informer verify the user’s token by
r.oidcuseri URL. a specific endpoint. If it is empty, then that
nfoendpoi endpoint will be identified via the configuration
nt end point which specified by

informer.authenticator.oidcconfigurationendpos
nt system property.

informer.a Unique identifier the https://1o In case of using 0IDCAuthenticator, it will be used

uthenticato OIDC userinfo gin.micros ¢4 find the OIDC configuration.

r.oidcconfi configuration URL. 22;3”11 e

gurationen common/

dpoint v2.0

informer.d Informer integration It can be used to introduce a user, If the

fltuser default login user. Informer app needs to provide that user
credential via its requests MAXAUTH or
Authorization header, to pass the Maximo
integration security which has differed from the
actual user that is supposed to log in to the app.

informer.c Flag to enable saving of 0 By enabling this flag, Informer stores all

ommandHi command history command executions' payload (XML) in

story.xml.s payload XML. ISCOMMANDHISTORY table. (If the app specfied that

tore command execution history needs to be saved.)

Undeclared Properties

The following properties are recognized by Informer, but are not automatically created during the
first start-up. All are optional, and cover more fringe needs.

Property Name Description

informer.authenti An implementation of
cator com.interlocsolutions.maximo.notify.security.Authenticator to provide user
credential authentication

informer.instrume Fully-Qualified name of an alternative class to collect data from an
ntcollector instrumentation reading sent by a device. Must implement
com.interlocsolutions.maximo.notify.InstrumentCollector.

informer.keepinst Flag to indicate if instrumentation history should be retained. 0 or false

rumenthistory indicate that instrumentation history should not be kept, 1 or true indicates it
will be retained. The instrumentation history is only available through the
database or reports and is stored in the ISDEVICEINSTRUMENTHISTORY table.

informer.smtp.hos Informer-local override of the mail.smtp.host property. Used by the
t PRINT REPORT Informer Command.

36

https://login.microsoftonline.com/common/v2.0
https://login.microsoftonline.com/common/v2.0
https://login.microsoftonline.com/common/v2.0
https://login.microsoftonline.com/common/v2.0
https://login.microsoftonline.com/common/v2.0
https://login.microsoftonline.com/common/v2.0

Property Name Description

informer.smtp.pas Informer-local override of the mxe.smtp.password property. Used by the
sword PRINT REPORT Informer Command.

informer.smtp.tlsP If specified, use the specified non-standard TLS port. Only applies when
ort informer.smtp.useTLS is true. Used by the PRINT_REPORT Informer Command.

informer.smtp.use If"1" or "true", communicate with the SMTP server using TLS. Used by the
TLS PRINT REPORT Informer Command.

informer.smtp.use Informer-local override of the mxe.smtp.user property. Used by the
r PRINT_REPORT Informer Command.

informer.sqlite.ret This property is intended for development debugging purposes, because the
ain files generated will be sizable and will accumulate over time. When
"true",SQLite databases created during preload will be deposited in the

system’s temp folder (such as /tmp on Linux systems). The file is of the form:
catalog_<CATALOGID>_<RANDOM_CHARS>.db

HF Properties

informer.hf.* properties are "Hotfix" properties, which exist to bridge a short-term gap until the
next full release of Informer.

HF properties, if present, are short-lived; For example, if an HF property is introduced in Informer
5.5.0-hf1, it is typically removed in 5.5.1 (When it has been rendered unnecessary).

PB Properties

informer.pb.* properties are "Probationary" properties, which exist to enable pre-release or
experimental features and behaviors.

These are not publicly documented, and are subject to change or removal between feature releases.

Dev Properties

The following properties are not defined automatically, and are not intended for normal Production
use.

These properties are for use by developers, debuggers, and/or power users. The adjustments of
behavior follow a theme of eliminating safeguards, automatic behavior, and/or optimizations.
These share a general goal of easing the development process, in which rapid changes are
commonplace.

Property Name Description

informer.dev.nore Intended for use during active Profile development, when the speed of
concileonactivatio deactivating and activating the profile is more important that data accuracy.
n

57

JVM Parameters

The following System properties control Informer processing threads run and if so how many will
run on a given node.

Property Description Default Value
Name

informer.queu Specifies the level of concurrency for Notification queue 3
e.pool.notificati processing. Informer has three type processors for Notification

on processing. The first number represents the number of"User

Expansion" processors, the second represents the number
of"User Evaluator"” processors, and the third represents the
number of "Record" processors. A value of 0 in any position
disables that type of processor on the JVM. A setting of "0" (no
comma separators) disables all types of Notification queue
processors on the JVM.

informer.queu Specifies the level of concurrency for Catalog queue processing. 2
e.pool.catalog Informer has two types of processors for Catalog processing. The
first number represents the number of "Aggregate" processors,
and the second one represents the number of "Record"
processors. A value of 0 in any position disables that type of
processor on the JVM. A setting of "0" (no commas separators)
disables all types of Catalog queue processors on the JVM.

informer.queu Specifies the number of "Push" queue processing threads to run 1
e.pool.push on a specific JVM node. If this is set to "0" then no push queue
threads will run.

Any given node can have a maximum of "1" push
queue processor.

NOTE

38

Appendix: Informer Cron Tasks

Informer uses a number of Maximo CronTasks to maintain the system health and operation. These
CronTasks are added to the system on install, but most are not configured to run by default. An
administrator must review and configure each of the following CronTasks.

CatalogCleanup

Cleans up outdated Catalog information. Informer may defer deletion of obsolete or orphaned
Catalog-related records for reasons of responsiveness and daytime operational efficiency. This
CronTask sweeps up at night.

This is the Catalog counterpart to NotificationCleanup.

Instance Configuration
Required for all deployments; Do not delete all instances.

A default instance is automatically defined by Informer. You may change the timing, but this Cron
should run at least weekly.

Parameters

There are no parameters to configure for this CronTask.

CatalogPreload

The CatalogPreload CronTask will evaluate all available catalogs that are marked for preload and
regenerate the preload pages for all catalogs that have exceeded the update threshold defined on
the Catalog record.

Instance Configuration

This CronTask is essential to server performance when delivering a Catalog in whole (such as to a
new or long-dormant device).

The generation of new preloads can sometimes be intensive if the Catalog is large, this work should
therefore be scheduled for periods of low system activity if possible.

A default instance is automatically defined by Informer. A very conservative default of once-per-
weeKk is applied by the system, but consider making this more frequently (even nightly). Note that
this CronTask will do nothing on Catalogs which do not exceed their thresholds, so scheduling a
higher frequency for this CronTask does not necessarily mean more work.

Parameters

There are no parameters to configure for this CronTask.

39

CatalogPurge

This CronTask is deprecated, and should no longer be used. It has been superseded by the
CatalogCleanup CronTask.

CatalogUpdate

This CronTask is deprecated, and should no longer be used. It has been superseded by the
ReconcileCatalog CronTask.

CommandHistoryPurge

Informer retains a set of information on each Command executed, including a hash of the request,
and the response to deliver. These records allow the server to:
* Identify duplicate requests and only execute them once (Idempotence)

* Cache responses for devices who failed to complete the Command round-trip (for example, due
to a network interruption)

* Facilitate notification to the issuing a device when a Command it requested was resolved server
side (via the Error Management tab in either Informer Maximo app)

* Provide historical/logging information for statistics

Although this information is very useful, over time this can become a significant number of records
with diminishing value. The command history purge CronTask provides a mechanism to purge
historical command information that has exceeded a specified retention period.

Instance Configuration
Optional, but generally recommended.

Without this CronTask, the Command history with grow forever. An infinite log is not of functional
value to most customers, so this CronTask serves as a way to clean up records which are far too old
to be useful.

Even running this monthly, with a 6-month retention period, is enough to say that the table will not
grow forever.

Parameters

Name Description Default Value
RetentionPeriod The command history retention period in days. 30
DeviceCleanup

This CronTask cleans up expired Device registrations.

60

https://en.wikipedia.org/wiki/Idempotence

Informer will keep track of certain information about every Device which synchronizes with it.
Should a device become unused, replaced, reset, etc, then Informer will never hear from that
device again, yet is still retaining information about that device indefinitely. This CronTask cleans
up those obsolete records.

For devices which have not logged in for a certain number of days, all device-related Information is
cleared.

One of the data points that Informer tracks for each device is which Catalogs they have
synchronized, and how up-to-date the device’s copy of that Catalog is. Legacy Catalog APIs (driven
by Informer client version in the app) use this information to determine what to delivery to the
devices. Should a device be "too far behind" in is synchronization of a large, fast-moving Catalog,
then that registration will be reset, causing that particular device to leverage preloads to
synchronize that particular Catalog upon next login.

The Catalog delta-counting cleanup is a more constrained cleanup for those records which out
outdated for one or more Catalogs, yet have still been active within the configured timeout period
(e.g. The device’s user goes on vacation for 2 weeks). This is especially important when using the
legacy Catalog APIs, still used by some Informer clients at time of this writing.

Instance Configuration

Recommended for all deployments. No default instance is defined.
Your use-case and tolerance for extraneous records dictate how permissive your parameters are.

Having some bound, at any setting, is recommended. Otherwise, the related tables can experience
unbounded growth over time.

A weekly execution schedule is typically sufficient, but more frequent execution is harmless.

Parameters

Name Description Default Value

daysInactiveThreshold Number of days since last login, before Informer 30
should stop tracking this device.

catalogDeltaThreshold Number of unsynchronized records a device can 20000
be behind for a given Catalog, before a reset of
that particular Catalog is triggered for that
device.

InformerMonitorCleanup

When Informer Monitor threads run, they report the status of the processes they are monitoring to
the database for display across JVMs in the system.

If a JVM goes down and does not return, this Cron ensures that stale data does not linger.

61

Instance Configuration

A default instance is automatically defined by Informer. You may change the timing, frequency, and
parameters, but keeping an instance of this configured is always recommended.

Parameters
Name Description Default Value
outdatednessDuration The outdatedness in (units) that monitor info 1
must be before it is considered abandoned and
purged.
outdatednessUnit The time unit that the specified HOURS
outdatednessDuration represents
InformerStats

When Informer statistics tracking is enabled via system properties, data is collected as the system
runs, but is not compiled into reports for human consumption. The InformerStats CronTask serves
this purpose at regular intervals. Whenever this task is run, statistics are compiled from recent
logged events, and the new report is saved as its own compiled record.

A lot of raw performance data is generated as the system runs, primarily for this CronTask to
evaluate and compile. It is therefore the responsibility of this task to also clean up uncompiled
records which have outlived their usefulness.

Instance Configuration

Only use this CronTask when also using the Informer "stats" feature.

This feature is not recommended for Production use, due to its overhead and complexity. It
primarily serves as a developer’s debug and analysis tool during development, issue investigation,
and proof-of-concept phases.

Parameters
Name Description Default Value
RetentionPeriod The duration in days that uncompiled stats will 7

be retained.

NotificationCleanup

Cleans up outdated Notification information. Informer may defer deletion of obsolete or orphaned
Notification-related records for reasons of responsiveness and daytime operational efficiency. This
CronTask sweeps up at night.

This is the Notification counterpart to CatalogCleanup.

62

Instance Configuration
Required for all deployments; Do not delete all instances.

A default instance is automatically defined by Informer. You may change the timing, but this Cron
should run at least weekly.

Parameters

There are no parameters to configure for this CronTask.

ReconcileCatalog

This CronTask will trigger a reconciliation of the specified Catalogs whenever it is executed.

This can be used for eventual recognition of objects which do not reliably fire MBO events, or for
Catalogs with "sliding window"(date-based) selection criteria in their where-clauses.

Forces a periodic reconciliation of the catalog content with the current result set as defined by the
where clause.

Instance Configuration

Applicability of this CronTask is completely dependent on the needs, design, and constraints of the
Informer Profile(s) it serves.

Parameters
Name Description Default Value
ProfileName The name of the profile that the listed catalogs
are part of.
CatalogNames A comma delimited list of catalogs to reconcile
for the specified profile.
SessionExpiry

Informer creates and manages its own session tokens for devices logging in through its API. This
CronTask runs frequently, cleaning up state information for expired Sessions, which no longer
require it.

The activities of this CronTask do NOT affect when Sessions become invalid, instead only
conducting cleanup of the Sessions which have already expired.

Note that this CronTask does not remove records from the more permanent, less stateful
ISSESSIONHISTORY table. See SessionPurge.

63

Instance Configuration
Required for all deployments; Do not delete all instances.

An instance of this CronTask is created automatically by Informer.

Parameters

There are no parameters to configure for this CronTask.

SessionPurge

The Informer platform indefinitely retains session history information for each session that is
created by a client device. This information is very useful when attempting to diagnose connectivity
issues or analyze usage patterns. However, over time this can become a significant number of
records with diminishing value. The SessionPurge purge CronTask provides a mechanism to purge
historical session information that has exceeded a specified retention period.

Instance Configuration

Optional, but generally recommended.

Without this CronTask, the Session history with grow forever. An infinite log is not of functional
value to most customers, so this CronTask serves as a way to clean up records which are far too old
to be useful.

Even running this monthly, with a 6-month retention period, is enough to say that the table will not
grow forever.

Parameters
Name Description Default Value
sessionRetPeriod The session history retention period in days. 30

64

Appendix: Maximo Loggers

During installation, Informer creates a few new Maximo loggers which can be configured like any
other. You may wish to review the created loggers and configure as appropriate for your
environment and the circumstances of the moment.

Logger Default Description
Level
informer WARN Informer logging which does not fall into the more

specific categories

informer.command WARN Logs pertaining to the handling of Informer Commands
(user actions via devices)

informer.nrqp WARN Logs pertaining to the "Notification Refresh Queue
Processors" and their associated listeners and tasks

informer.crqp WARN Logs pertaining to the "Catalog Refresh Queue
Processors" and their associated listeners and tasks

65

Appendix: Informer Installer Details

The following information is for informational purposes only.

informer-install.bat

The installer attempts to establish a connection to the specified database and then inserts new
records in the MAXSERVICE table with the following values:

Attribute Value

SERVICENAME NOTIFY

DESCRIPTION Notification Service

CLASSNAME com.interlocsolutions.maximo.notify.NotifyService
MAXSERVICEID Calculated to be the next in the sequence
INITORDER 1010

INTERNAL 0

ACTIVE 1

Attribute Value

SERVICENAME NOTIFYINFO

DESCRIPTION Notification Info

CLASSNAME com.interlocsolutions.maximo.notify.NotifyInfoService
MAXSERVICEID Calculated to be the next in the sequence
INITORDER 1050

INTERNAL 0

ACTIVE 1

Attribute Value

SERVICENAME NOTIFYPUB

DESCRIPTION Notification Public Service

CLASSNAME com.interlocsolutions.maximo.notify.NotifyPublicService
MAXSERVICEID Calculated to be the next in the sequence
INITORDER 1020

INTERNAL 0

ACTIVE 1

Attribute Value

SERVICENAME NOTIFYCLASSES

66

Attribute Value

DESCRIPTION Interloc Informer ClassLoader Service

CLASSNAME com.interlocsolutions.maximo.notify.classloader.InformerClassesService
MAXSERVICEID Calculated to be the next in the sequence

INITORDER 900

INTERNAL 0

ACTIVE 1

In addition to the database entries the installer also adds a Servlet entry to the
<maximo_home>\applications\maximo\maximouiweb\webmodule\WEB-INF\web.xml and updates the
<maximo_home>\applications\maximo\meaweb\webmodule\WEB-INF\web.xml with a comment that can
removed to ensure that the NOTIFYINFO service is left unauthenticated in a secured environment.

The <maximo_home>\applications\maximo\maximouiweb\webmodule\WEB-INF\web.xml file has the
following entries added:

Informer Servlets

<servlet>

<description>Informer Servlet</description>

<servlet-name>NotifyExport</servlet-name>

<servlet-class>
com.interlocsolutions.maximo.webclient.servlet.NotifyServlet</servlet-class>
</servlet>
<servlet>

<description>Informer Application Deployment Servlet</description>

<servlet-name>NotifyAppDeploy</serviet-name>

<servlet-class>
com.interlocsolutions.maximo.webclient.servlet.AppDeployServlet</servlet-class>
</servlet>

and

Informer Servlet Mappings

<servlet-mapping>
<servlet-name>NotifyExport</servlet-name>
<url-pattern>/notifyexport/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>NotifyAppDeploy</servlet-name>
<url-pattern>/informer/apps/*</url-pattern>

</servlet-mapping>

Installing the Interloc Mobile Informer to the target Maximo installation folder also adds a
product.xml file named isinformer.xml to the <maximo_home>\deployment\product folder. This file

67

ensures that the Java JAR files required by the installer are included in the Maximo class path.

68

Appendix: Using an external Oracle
Database for Informer Queues

To set up an Oracle Informer external database, you need a new dedicated Oracle database instance
with a user that has DDL and DML access. All data contained within this database will be temporary
and can be regenerated in a disaster recovery scenario, so we recommend disabling any logging,
archiving, or recovery features for this new instance.

Then, for creating the Informer data model, you can run the Informer DB setup bash file (Linux:
informer-dbsetup.sh) or batch file (Windows: informer-dbsetup.bat) which can be found in the
Maximo tools folder (e.g. Linux: /opt/IBM/SMP/maximo/tools/maximo/ Windows:
C:\IBM\SMP\maximo\tools\maximo) and an OS command terminal to execute it.

You can see the Informer DB setup script’s manual by executing it with the --help parameter like
this:

Linux: ./informer-dbsetup.sh --help

Windows: .\informer-dbsetup.bat --help

For executing that script to create the Informer DB, you need at least three parameters:

* JDBC URL that should follow this syntax:
https://docs.oracle.com/cd/B28359_01/java.111/b31224/urls.htm#BEIJFHHB (For thin driver)
The simplest form would be: jdbc:oracle:thin:@//${hostname}:${port}/${service_name}

e DB username
* DB password
To create the Informer data model in this database, execute the informer-dbsetup script like so:

Linux: ./informer-dbsetup.sh ${jdbcur1} -u ${dbuser}
Windows: .\informer-dbsetup.bat ${jdbcurl} -u ${dbuser}

After setup Informer DB successfully and also install Informer you need to set three Maximo
properties:

 informer.db.queue.url - ${jdbcurl}
* informer.db.queue.user — ${dbuser}

 informer.db.queue.pw - ${dbpassword}

At the end, for finalizing the installation you need to restart Maximo.

69

https://docs.oracle.com/cd/B28359_01/java.111/b31224/urls.htm#BEIJFHHB

Appendix: Using an external SqlServer
Database for Informer Queues

To set up an SQL Server Informer external database, you need a new dedicated SQL Server
database with a user that has DDL and DML access. All data contained within this database will be
temporary and can be regenerated in a disaster recovery scenario, so we recommend disabling any
logging, archiving, or recovery features for this new instance.

Then, for creating the Informer data model, you can run the Informer DB setup bash file (Linux:
informer-dbsetup.sh) or batch file (Windows: informer-dbsetup.bat) which can be found in the
Maximo tools folder (e.g. Linux: /opt/IBM/SMP/maximo/tools/maximo/ Windows:
C:\IBM\SMP\maximo\tools\maximo) and an OS command terminal to execute it.

You can see the Informer DB setup script’s manual by executing it with the --help parameter like
this:

Linux: ./informer-dbsetup.sh --help

Windows: .\informer-dbsetup.bat --help

For executing that script to create the Informer DB, you need at least three parameters:

* JDBC URL that should follow this syntax: https://docs.microsoft.com/en-us/sql/connect/jdbc/
building-the-connection-url?view=sql-server-2017
The simplest form would be: jdbc:sqlserver://${hostname}:${port};databaseName=§{dbname}

e DB username
* DB password
To create the Informer data model in this database, execute the informer-dbsetup script like so:

Linux: ./informer-dbsetup.sh '${jdbcur1}"' -u ${dbuser}
Windows: .\informer-dbsetup.bat '${jdbcurl}' -u ${dbuser}

After setup Informer DB successfully and also install Informer you need to set three Maximo
properties:

 informer.db.queue.url - ${jdbcurl}
* informer.db.queue.user — ${dbuser}

 informer.db.queue.pw - ${dbpassword}

At the end, for finalizing the installation you need to restart Maximo.

70

https://docs.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url?view=sql-server-2017

Appendix: Using an external DB2 Database
for Informer Queues

To set up a DB2 Informer external database, you need a new dedicated DB2 database with a user
that has DDL and DML access.

All data contained within this database will be temporary and can be regenerated in a disaster
recovery scenario, so we recommend disabling any logging, archiving, or recovery features for this
new instance.

Then, for creating the Informer data model, you can run the Informer DB setup bash file (Linux:
informer-dbsetup.sh) or batch file (Windows: informer-dbsetup.bat) which can be found in the
Maximo tools folder (e.g. Linux: /opt/IBM/SMP/maximo/tools/maximo/ Windows:
C:\IBM\SMP\maximo\tools\maximo) and an OS command terminal to execute it.

You can see the Informer DB setup script’s manual by executing it with the --help parameter like
this:

Linux: ./informer-dbsetup.sh --help

Windows: .\informer-dbsetup.bat --help

For executing that script to create the Informer DB, you need at least three parameters:

* JDBC URL that should follow this syntax: https:/www.ibm.com/support/knowledgecenter/en/
SSEPGG_11.1.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_r0052342.html
The simplest form would be: jdbc:db2://${hostname}:${port}/${dbname}

¢ DB username

* DB password

To create the Informer data model in this database, execute the informer-dbsetup script like so:
Linux: ./informer-dbsetup.sh ${jdbcurl} -u ${dbuser}
Windows: .\informer-dbsetup.bat ${jdbcurl} -u ${dbuser}

After setup Informer DB successfully and also install Informer you need to set three Maximo
properties:

* informer.db.queue.url - ${jdbcurl}
 informer.db.queue.user - ${dbuser}

 informer.db.queue.pw — ${dbpassword}

At the end, for finalizing the installation you need to restart Maximo.

71

https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_r0052342.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_r0052342.html

Appendix: Using an external MySQL
Database for Informer Queues

First of all for setup a MySQL Informer external database, you need a new dedicated MySQL
database with a user that has DDL and DML access. All data contained within this database will be
temporary and can be regenerated in a disaster recovery scenario, so we recommend disabling any
logging, archiving, or recovery features for this new instance.

Then, for creating the Informer data model, you can run the Informer DB setup bash file (Linux:
informer-dbsetup.sh) or batch file (Windows: informer-dbsetup.bat) which can be found in the
Maximo tools folder (e.g. Linux: /opt/IBM/SMP/maximo/tools/maximo/ Windows:
C:\IBM\SMP\maximo\tools\maximo) and an OS command terminal to execute it.

You can see the Informer DB setup script’s manual by executing it with the --help parameter like
this:

Linux: ./informer-dbsetup.sh --help

Windows: .\informer-dbsetup.bat --help

For executing that script to create the Informer DB, you need at least three parameters:

* JDBC URL that should follow this syntax:
https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-reference-url-format.html
The simplest form would be: jdbc:mysql://${hostname}:${port}/${dbname}

e DB username
* DB password
To create the Informer data model in this database, execute the informer-dbsetup script like so:

Linux: ./informer-dbsetup.sh ${jdbcur1} -u ${dbuser}
Windows: .\informer-dbsetup.bat ${jdbcurl} -u ${dbuser}

After setup Informer DB successfully and also install Informer you need to set three Maximo
properties:

 informer.db.queue.url - ${jdbcurl}
* informer.db.queue.user — ${dbuser}

 informer.db.queue.pw - ${dbpassword}

At the end, for finalizing the installation you need to restart Maximo.

72

https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-reference-url-format.html

Appendix: Using an external SQLite
Database for Informer Queues

To use SQLite for the external queue database, start by deciding on an appropriate file path
complete with filename. A file extension of .sqlite3 is recommended. (e.g.
/opt/informer/informerq.sqlite3)

Then, for creating the Informer data model, you can run the Informer DB setup bash file (Linux:
informer-dbsetup.sh) or batch file (Windows: informer-dbsetup.bat) which can be found in the
Maximo tools folder (e.g. Linux: /opt/IBM/SMP/maximo/tools/maximo/ Windows:
C:\IBM\SMP\maximo\tools\maximo) and an OS command terminal to execute it.

You can see the Informer DB setup script’s manual by executing it with the --help parameter like
this:

Linux: ./informer-dbsetup.sh --help

Windows: .\informer-dbsetup.bat --help

For executing that script to create the Informer DB, you need at least one parameter:

» JDBC URL that should follow this syntax:
https://github.com/xerial/sqlite-jdbc#how-to-specify-database-files
The simplest form would be: jdbc:sqlite: ${filepath}

To create the Informer data model in this database, execute the informer-dbsetup script like so:
Linux: ./informer-dbsetup.sh ${jdbcurl}
Windows: .\informer-dbsetup.bat ${jdbcurl}

After setup Informer DB successfully and also install Informer you need to set only one Maximo
property:

* informer.db.queue.url - ${jdbcurl}

At the end, for finalizing the installation you need to restart Maximo.

73

https://github.com/xerial/sqlite-jdbc#how-to-specify-database-files

Appendix: Using an external PostgreSQL
Database for Informer Queues

To setup a PostgreSQL Informer external database you need a new dedicated PostgreSQL database
with a user that has DDL. and DML access.

All data contained within this database will be temporary and can be regenerated in a disaster
recovery scenario, so we recommend disabling any logging, archiving, or recovery features for this
new instance.

Then, to create the Informer data model, run the Informer DB setup bash file (Linux: informer-
dbsetup.sh) or batch file (Windows: informer-dbsetup.bat) which can be found in the Maximo tools
folder (e.g. Linux: /opt/IBM/SMP/maximo/tools/maximo/ Windows: C:\IBM\SMP\maximo\tools\maximo)
and an OS command terminal to execute it.

You can see the Informer DB setup script’s manual by executing it with the -help parameter like
this:

Linux: ./informer-dbsetup.sh --help

Windows: .\informer-dbsetup.bat --help

To execute the script to create the Informer DB, you need at least three parameters:

* A JDBC URL following this syntax:
https://jdbc.postgresql.org/documentation/head/connect.html
The simplest form would be: jdbc:postgresql://${hostname}:${port}/${dbname}

e DB username
* DB password
To create the Informer data model in this database, execute the informer-dbsetup script like so:

Linux: ./informer-dbsetup.sh ${jdbcurl} -u ${dbuser}
Windows: .\informer-dbsetup.bat ${jdbcurl} -u ${dbuser}

After setup Informer DB successfully and also install Informer you need to set three Maximo
properties:

* informer.db.queue.url - ${jdbcurl}
 informer.db.queue.user - ${dbuser}

 informer.db.queue.pw — ${dbpassword}

To finalize the installation, you need to restart Maximo.

74

https://jdbc.postgresql.org/documentation/head/connect.html

Appendix: Additional Pre-Installation
Checks when Upgrading from Informer 4.x

MAXMENU

When upgrading to Informer 5.x from 4.x, there are duplicate MAXMENU entries. Run the following
SQL statement before upgrading:

DELETE maxmenu WHERE moduleapp = 'NOTIFY';

This will resolve the issue.

Clean up Existing Informer Profiles

If upgrading a system which has an existing Informer installation of 5.2 or earlier, please perform
the following steps:

Deleting Registered Devices

Informer 5.2+ introduces a new method to track and store catalog data. Therefore, it is necessary to
delete any existing device registrations before allowing devices to connect to the newly installed
version of Informer. Please note that deleting device records will result in the client device deleting
all stored data, including any pending commands(user actions) in the transaction queue. For
this reason it is important to ensure that all pending commands are sent before this action is
performed. To delete device records, please follow these steps:

1. Using the Informer Developer or Informer Administration applications, navigate to the Devices
tab.

2. Select the check box next to the device you wish to delete. It is also possible to select more than
one device or all devices on the page.

3. Click the "Delete Selected" button

4, Save

Deleting the device record also deletes any associated push device registrations so

NOTE . .
there is no need to take any further action.

When the device attempts to connect (following device deletion) it will recognize that a reset has
taken place and will wipe all stored data. Hence, the provisioning of catalogs and notifications will
begin.

Deactivating Informer Profiles

To deactivate a profile, the system should be running.

75

Go To Administration > Informer Administration
Administration > Informer Developer can also be used
In the List view, open any record whose "active" checkbox is marked

Select the "Deactivate Profile" action

SR

Repeat for each active Profile

More information on profile activation and deactivation can be found in the "Informer
Administration" and "Informer Developer" application guides.

Once the profiles are deactivated, shut down the application server.

Clearing Informer Processing Queues

Before clearing the Informer queues, Informer profiles should be deactivated (above), and the
application servers should be shut down.

Only then, execute the following statements to immediately and completely clear Informer
processing queues.

TRUNCATE TABLE isnotifyqueuemonitor;
TRUNCATE TABLE isnotifyrefreshqueue;
TRUNCATE TABLE 1iscatalogqueuemonitor;
TRUNCATE TABLE iscatalogrefreshqueue;
TRUNCATE TABLE ispushqueuemonitor;
TRUNCATE TABLE ispushqueue;

The ISPUSHQUEUE, ISPUSHQUEUEMONITOR, ISCATALOGREFRESHQUEUE and/or ISCATALOGQUEUEMONITOR tables
may not exist, depending on the version of Informer you are upgrading from. If an error occurs
while attempting to truncate, please confirm that these tables exist. If they do not, then there is no
issue.

Index Violations (When upgrading from Informer 5.5.0
or earlier)

In versions of Informer before 5.5.0, it was possible to have multiple identical Catalog registrations
(for the same device registering for the same revision of the same Catalog), due to timing issues.
This resulted in lookup errors, causing affected devices to get inaccurate or missing prompts for
Catalog synchronization. A unique index now prevents this possibility, and is installed with
Informer. In order for installation to succeed, the current data must not violate this new unique
index.

This SQL will have no effect if nothing needs to be corrected. There is no need to run this again
during subsequent upgrades.

Run the following SQL while the system is down, before upgrading:

76

-- Note: The below statement is consciously overcomplicated in order to be compatible
with all 3 possible DBMSes Maximo supports
DELETE FROM iscatalogdevice WHERE deviceid IN (

SELECT iscatalogdevice.deviceid

FROM iscatalogdevice

JOIN (

SELECT deviceid, (COUNT(*) OVER (PARTITION BY DEVICEKEY, CATALOGID, REVISION,

LANGCODE)) AS numcopies

FROM iscatalogdevice

) subq ON iscatalogdevice.deviceid = subq.deviceid AND numcopies > 1

)

Index Violations

In versions of Informer before 5.4.0, it was possible to have multiple functionally-identical records
in ISCATALOGDATA, which could result in lookup errors. A unique index now prevents this possibility,
and is installed with Informer. In order for installation to succeed, the current data must not violate
this new unique index.

This SQL will have no effect if nothing needs to be corrected. There is no need to run this again
during subsequent upgrades.

Run the following SQL while the system is down, before upgrading:

-- Delete violators of ISCATALOGDATA_NDX6
DELETE
FROM iscatalogdata
WHERE catalogdataid IN
(SELECT catalogdataid
FROM iscatalogdata cd
JOIN
(SELECT catalogid, recordid, MAX(catalogdataid) newestDup
FROM iscatalogdata
GROUP BY catalogid, recordid
HAVING COUNT(*) > 1

) cddup
ON (cd.catalogid = cddup.catalogid
AND cd.recordid = cddup.recordid)
WHERE cd.catalogdataid <> cddup.newestdup
)i

Required Fields

In versions of Informer before 5.3.0, some fields were functionally required, but not enforced in the
database configuration. Running these two queries corrects the record, preventing errors during
upgrade without sacrificing other forms of validation.

77

UPDATE maxattribute SET required = 1 WHERE required = 0 AND (
(objectname = "ISNOTIFYATTRIBUTE' AND attributename = 'ATTRIBUTENAME")

OR (objectname
OR (objectname
OR (objectname
OR (objectname
OR (objectname
OR (objectname
OR (objectname
OR (objectname
OR (objectname
);

"ISNOTIFYGROUPOPTION' AND attributename = 'NOTIFYGROUPID')
"ISNOTIFYGROUPOPTION" AND attributename "NOTIFYOPTIONID")
"ISNOTIFYGROUPUSER' AND attributename = 'NOTIFYGROUPID')
"ISNOTIFYGROUPUSER' AND attributename = "NOTIFYUSERID')
"ISNOTIFYOBJECT' AND attributename = 'OBJECTNAME')
"ISNOTIFYOPTION' AND attributename = 'NOTIFYID')
"ISNOTIFYOPTION' AND attributename = 'OPTIONNAME")
"ISNOTIFYSEQ' AND attributename = 'SEQUENCE")
"ISNOTIFYVERSION' AND attributename = 'VERSION')

UPDATE maxattributecfg SET required = 1 WHERE required = 0 AND (
(objectname = "ISNOTIFYATTRIBUTE' AND attributename = 'ATTRIBUTENAME")

OR (objectname
OR (objectname
OR (objectname
OR (objectname
OR (objectname
OR (objectname
OR (objectname
OR (objectname
OR (objectname
);

"ISNOTIFYGROUPOPTION' AND attributename = 'NOTIFYGROUPID')
"ISNOTIFYGROUPOPTION" AND attributename = 'NOTIFYOPTIONID')
"ISNOTIFYGROUPUSER' AND attributename = 'NOTIFYGROUPID')
"ISNOTIFYGROUPUSER' AND attributename = "NOTIFYUSERID')
"ISNOTIFYOBJECT' AND attributename = 'OBJECTNAME')
"ISNOTIFYOPTION' AND attributename = 'NOTIFYID')
"ISNOTIFYOPTION' AND attributename "OPTIONNAME")
"ISNOTIFYSEQ' AND attributename = 'SEQUENCE")
"ISNOTIFYVERSION' AND attributename = 'VERSION')

Index Violations

In versions of Informer before 5.5.0, it was possible to have multiple identical Catalog registrations
(for the same device registering for the same revision of the same Catalog), due to timing issues.
This resulted in lookup errors, causing affected devices to get inaccurate or missing prompts for
Catalog synchronization. A unique index now prevents this possibility, and is installed with
Informer. In order for installation to succeed, the current data must not violate this new unique

index.

This SQL will have no effect if nothing needs to be corrected. There is no need to run this again

during subsequent upgrades.

Run the following SQL while the system is down, before upgrading:

78

-- Note: The below statement is consciously overcomplicated in order to be compatible
with all 3 possible DBMSes Maximo supports
DELETE FROM iscatalogdevice WHERE deviceid IN (

SELECT iscatalogdevice.deviceid

FROM iscatalogdevice

JOIN (

SELECT deviceid, (COUNT(*) OVER (PARTITION BY DEVICEKEY, CATALOGID, REVISION,

LANGCODE)) AS numcopies

FROM iscatalogdevice

) subg ON iscatalogdevice.deviceid = subg.deviceid AND numcopies > 1

)i

79

Appendix: Additional Pre-Installation
Checks when Upgrading from Informer 5.2

Clean up Existing Informer Profiles

If upgrading a system which has an existing Informer installation of 5.2 or earlier, please perform
the following steps:

Deleting Registered Devices

Informer 5.2+ introduces a new method to track and store catalog data. Therefore, it is necessary to
delete any existing device registrations before allowing devices to connect to the newly installed
version of Informer. Please note that deleting device records will result in the client device deleting
all stored data, including any pending commands(user actions) in the transaction queue. For
this reason it is important to ensure that all pending commands are sent before this action is
performed. To delete device records, please follow these steps:

1. Using the Informer Developer or Informer Administration applications, navigate to the Devices
tab.

2. Select the check box next to the device you wish to delete. It is also possible to select more than
one device or all devices on the page.

3. Click the Delete Selected button.

4. Save

Deleting the device record also deletes any associated push device registrations so

NOTE
there is no need to take any further action.

When the device attempts to connect (following device deletion) it will recognize that a reset has
taken place and will wipe all stored data. Hence, the provisioning of catalogs and notifications will
begin.

Deactivating Informer Profiles
To deactivate a profile, the system should be running.

Go To Administration > Informer Administration
Administration > Informer Developer can also be used
In the List view, open any record whose "active" checkbox is marked

Select the "Deactivate Profile" action.

SR

Repeat for each active profile

More information on profile activation and deactivation can be found in the "Informer
Administration" and "Informer Developer" application guides.

80

Once the profiles are deactivated, shut down the application server.

Clearing Informer Processing Queues

Before clearing the Informer queues, Informer profiles should be deactivated (above), and the
application servers should be shut down.

Only then, execute the following statements to immediately and completely clear Informer
processing queues.

TRUNCATE TABLE isnotifyqueuemonitor;
TRUNCATE TABLE isnotifyrefreshqueue;
TRUNCATE TABLE iscatalogqueuemonitor;
TRUNCATE TABLE iscatalogrefreshqueue;
TRUNCATE TABLE ispushqueuemonitor;
TRUNCATE TABLE ispushqueue;

The ISPUSHQUEUE, ISPUSHQUEUEMONITOR, ISCATALOGREFRESHQUEUE and/or ISCATALOGQUEUEMONITOR tables
may not exist, depending on the version of Informer you are upgrading from. If an error occurs
while attempting to truncate, please confirm that these tables exist. If they do not, then there is no
issue.

Index Violations

In versions of Informer before 5.5.0, it was possible to have multiple identical Catalog registrations
(for the same device registering for the same revision of the same Catalog), due to timing issues.
This resulted in lookup errors, causing affected devices to get inaccurate or missing prompts for
Catalog synchronization. A unique index now prevents this possibility, and is installed with
Informer. In order for installation to succeed, the current data must not violate this new unique
index.

This SQL will have no effect if nothing needs to be corrected. There is no need to run this again
during subsequent upgrades.

Run the following SQL while the system is down, before upgrading:

-- Note: The below statement is consciously overcomplicated in order to be compatible
with all 3 possible DBMSes Maximo supports
DELETE FROM iscatalogdevice WHERE deviceid IN (

SELECT 1iscatalogdevice.deviceid

FROM iscatalogdevice

JOIN (

SELECT deviceid, (COUNT(*) OVER (PARTITION BY DEVICEKEY, CATALOGID, REVISION,

LANGCODE)) AS numcopies

FROM iscatalogdevice

) subq ON iscatalogdevice.deviceid = subg.deviceid AND numcopies > 1

)i

81

Index Violations

In versions of Informer before 5.4.0, it was possible to have multiple functionally identical records
in ISCATALOGDATA, which could result in lookup errors. A unique index now prevents this possibility,
and is installed with Informer. In order for installation to succeed, the current data must not violate
this new unique index.

This SQL will have no effect if nothing needs to be corrected. There is no need to run this again
during subsequent upgrades.

Run the following SQL while the system is down, before upgrading:

-- Delete violators of ISCATALOGDATA _NDX6
DELETE
FROM iscatalogdata
WHERE catalogdataid IN
(SELECT catalogdataid
FROM iscatalogdata cd
JOIN
(SELECT catalogid, recordid, MAX(catalogdataid) newestDup
FROM iscatalogdata
GROUP BY catalogid, recordid
HAVING COUNT(*) > 1

) cddup
ON (cd.catalogid = cddup.catalogid
AND cd.recordid = cddup.recordid)
WHERE cd.catalogdataid <> cddup.newestdup
)i

Required Fields

In versions of Informer before 5.3.0, some fields were functionally required, but not enforced in the
database configuration. Running these two queries corrects the record, preventing errors during
upgrade without sacrificing other forms of validation.

82

UPDATE maxattribute SET required = 1 WHERE required = 0 AND (

(objectname = "ISNOTIFYATTRIBUTE' AND attributename = 'ATTRIBUTENAME")

OR (objectname = 'ISNOTIFYGROUPOPTION' AND attributename = 'NOTIFYGROUPID')
OR (objectname = 'ISNOTIFYGROUPOPTION' AND attributename = 'NOTIFYOPTIONID')
OR (objectname = "ISNOTIFYGROUPUSER' AND attributename = 'NOTIFYGROUPID")

OR (objectname = 'ISNOTIFYGROUPUSER' AND attributename = 'NOTIFYUSERID')

OR (objectname = "ISNOTIFYOBJECT' AND attributename = 'OBJECTNAME')

OR (objectname = 'ISNOTIFYOPTION' AND attributename = 'NOTIFYID')

OR (objectname = "ISNOTIFYOPTION' AND attributename = 'OPTIONNAME')

OR (objectname = "ISNOTIFYSEQ' AND attributename = 'SEQUENCE")

OR (objectname = "ISNOTIFYVERSION' AND attributename = 'VERSION')

)E
UPDATE maxattributecfg SET required = 1 WHERE required = 0 AND (

(objectname = "ISNOTIFYATTRIBUTE' AND attributename = 'ATTRIBUTENAME")

OR (objectname = 'ISNOTIFYGROUPOPTION' AND attributename = 'NOTIFYGROUPID')
OR (objectname = 'ISNOTIFYGROUPOPTION' AND attributename = 'NOTIFYOPTIONID')
OR (objectname = "ISNOTIFYGROUPUSER' AND attributename = 'NOTIFYGROUPID")

OR (objectname = 'ISNOTIFYGROUPUSER' AND attributename = 'NOTIFYUSERID')

OR (objectname = "ISNOTIFYOBJECT' AND attributename = 'OBJECTNAME')

OR (objectname = 'ISNOTIFYOPTION' AND attributename = 'NOTIFYID')

OR (objectname = "ISNOTIFYOPTION' AND attributename = 'OPTIONNAME')

OR (objectname = "ISNOTIFYSEQ' AND attributename = 'SEQUENCE")
OR (objectname = "ISNOTIFYVERSION' AND attributename = 'VERSION')
IE

Index Violations

In versions of Informer before 5.5.0, it was possible to have multiple identical Catalog registrations
(for the same device registering for the same revision of the same Catalog), due to timing issues.
This resulted in lookup errors, causing affected devices to get inaccurate or missing prompts for
Catalog synchronization. A unique index now prevents this possibility, and is installed with
Informer. In order for installation to succeed, the current data must not violate this new unique
index.

This SQL will have no effect if nothing needs to be corrected. There is no need to run this again
during subsequent upgrades.

Run the following SQL while the system is down, before upgrading:

83

-- Note: The below statement is consciously overcomplicated in order to be compatible
with all 3 possible DBMSes Maximo supports
DELETE FROM iscatalogdevice WHERE deviceid IN (

SELECT iscatalogdevice.deviceid

FROM iscatalogdevice

JOIN (

SELECT deviceid, (COUNT(*) OVER (PARTITION BY DEVICEKEY, CATALOGID, REVISION,

LANGCODE)) AS numcopies

FROM iscatalogdevice

) subg ON iscatalogdevice.deviceid = subg.deviceid AND numcopies > 1

)i

84

Appendix: Additional Pre-Installation
Checks when Upgrading from Informer 5.3

Index Violations

In versions of Informer before 5.4.0, it was possible to have multiple functionally identical records
in ISCATALOGDATA, which could result in lookup errors. A unique index now prevents this possibility,
and is installed with Informer. In order for installation to succeed, the current data must not violate
this new unique index.

This SQL will have no effect if nothing needs to be corrected. There is no need to run this again
during subsequent upgrades.

Run the following SQL while the system is down, before upgrading:

-- Delete violators of ISCATALOGDATA_NDX6
DELETE
FROM iscatalogdata
WHERE catalogdataid IN
(SELECT catalogdataid
FROM iscatalogdata cd
JOIN
(SELECT catalogid, recordid, MAX(catalogdataid) newestDup
FROM iscatalogdata
GROUP BY catalogid, recordid
HAVING COUNT(*) > 1

) cddup
ON (cd.catalogid = cddup.catalogid
AND cd.recordid = cddup.recordid)
WHERE cd.catalogdataid <> cddup.newestdup

)

Required Fields

In versions of Informer before 5.3.0, some fields were functionally required, but not enforced in the
database configuration. Running these two queries corrects the record, preventing errors during
upgrade without sacrificing other forms of validation.

85

UPDATE maxattribute SET required = 1 WHERE required = 0 AND (
(objectname = "ISNOTIFYATTRIBUTE' AND attributename = 'ATTRIBUTENAME")

OR (objectname
OR (objectname
OR (objectname
OR (objectname
OR (objectname
OR (objectname
OR (objectname
OR (objectname
OR (objectname
);

"ISNOTIFYGROUPOPTION' AND attributename = 'NOTIFYGROUPID')
"ISNOTIFYGROUPOPTION" AND attributename "NOTIFYOPTIONID")
"ISNOTIFYGROUPUSER' AND attributename = 'NOTIFYGROUPID')
"ISNOTIFYGROUPUSER' AND attributename = "NOTIFYUSERID')
"ISNOTIFYOBJECT' AND attributename = 'OBJECTNAME')
"ISNOTIFYOPTION' AND attributename = 'NOTIFYID')
"ISNOTIFYOPTION' AND attributename = 'OPTIONNAME")
"ISNOTIFYSEQ' AND attributename = 'SEQUENCE")
"ISNOTIFYVERSION' AND attributename = 'VERSION')

UPDATE maxattributecfg SET required = 1 WHERE required = 0 AND (
(objectname = "ISNOTIFYATTRIBUTE' AND attributename = 'ATTRIBUTENAME")

OR (objectname
OR (objectname
OR (objectname
OR (objectname
OR (objectname
OR (objectname
OR (objectname
OR (objectname
OR (objectname
);

"ISNOTIFYGROUPOPTION' AND attributename = 'NOTIFYGROUPID')
"ISNOTIFYGROUPOPTION" AND attributename = 'NOTIFYOPTIONID')
"ISNOTIFYGROUPUSER' AND attributename = 'NOTIFYGROUPID')
"ISNOTIFYGROUPUSER' AND attributename = "NOTIFYUSERID')
"ISNOTIFYOBJECT' AND attributename = 'OBJECTNAME')
"ISNOTIFYOPTION' AND attributename = 'NOTIFYID')
"ISNOTIFYOPTION' AND attributename "OPTIONNAME")
"ISNOTIFYSEQ' AND attributename = 'SEQUENCE")
"ISNOTIFYVERSION' AND attributename = 'VERSION')

Index Violations

In versions of Informer before 5.5.0, it was possible to have multiple identical Catalog registrations
(for the same device registering for the same revision of the same Catalog), due to timing issues.
This resulted in lookup errors, causing affected devices to get inaccurate or missing prompts for
Catalog synchronization. A unique index now prevents this possibility, and is installed with
Informer. In order for installation to succeed, the current data must not violate this new unique

index.

This SQL will have no effect if nothing needs to be corrected. There is no need to run this again

during subsequent upgrades.

Run the following SQL while the system is down, before upgrading:

86

-- Note: The below statement is consciously overcomplicated in order to be compatible
with all 3 possible DBMSes Maximo supports
DELETE FROM iscatalogdevice WHERE deviceid IN (

SELECT iscatalogdevice.deviceid

FROM iscatalogdevice

JOIN (

SELECT deviceid, (COUNT(*) OVER (PARTITION BY DEVICEKEY, CATALOGID, REVISION,

LANGCODE)) AS numcopies

FROM iscatalogdevice

) subg ON iscatalogdevice.deviceid = subg.deviceid AND numcopies > 1

)i

87

Appendix: Additional Pre-Installation
Checks when Upgrading from Informer 5.5

Index Violations

In versions of Informer before 5.5.0, it was possible to have multiple identical Catalog registrations
(for the same device registering for the same revision of the same Catalog), due to timing issues.
This resulted in lookup errors, causing affected devices to get inaccurate or missing prompts for
Catalog synchronization. A unique index now prevents this possibility, and is installed with
Informer. In order for installation to succeed, the current data must not violate this new unique
index.

This SQL will have no effect if nothing needs to be corrected. There is no need to run this again
during subsequent upgrades.

Run the following SQL while the system is down, before upgrading:

-- Note: The below statement is consciously overcomplicated in order to be compatible
with all 3 possible DBMSes Maximo supports
DELETE FROM iscatalogdevice WHERE deviceid IN (

SELECT 1iscatalogdevice.deviceid

FROM iscatalogdevice

JOIN (

SELECT deviceid, (COUNT(*) OVER (PARTITION BY DEVICEKEY, CATALOGID, REVISION,

LANGCODE)) AS numcopies

FROM iscatalogdevice

) subq ON iscatalogdevice.deviceid = subg.deviceid AND numcopies > 1

)

88

Appendix: Pre-6 Queue Processors

Version 6 takes a new approach to queue processing which improves performance, reduces
database resources, and avoids database deadlocks. The previous queue processors are still
available and can still be used if needed. This appendix documents how to use and configure the
old queue processors.

There are three primary types of queue processors: "Notification","Catalog”, and "Push".
Notification processors have three sub-types:"User Expansion”, "User Evaluator”, and "Record".
Catalog processors have two sub-types: "Aggregate”, and "Record". There is currently only one type
of Push processor.

The number of each queue processor thread can be configured with these System/Instance
Properties:

Property Description Value
Name

informer.queu Specifies the level of concurrency for Notification queue 1,1,1
e.pool.notificati processing. Informer has three type processors for Notification

on processing. The first number represents the number of"User

Expansion” processors, the second represents the number
of"User Evaluator" processors, and the third represents the
number of"Record" processors. A value of 0 in any position
disables that type of processor on the JVM. A setting of "0" (no
comma separators) disables all types of Notification queue
processors on the JVM.

informer.queu Specifies the level of concurrency for Catalog queue processing. 1,1
e.pool.catalog Informer has two types of processors for Catalog processing. The
first number represents the number of "Aggregate" processors,
and the second one represents the number of "Record"
processors. A value of 0 in any position disables that type of
processor on the JVM. A setting of "0" (no commas separators)
disables all types of Catalog queue processors on the JVM.

informer.queu Specifies the number of "Push" queue processing threadstorun 1

e.pool.push on a specific JVM node. If this is set to "0" then no push queue
threads will run. NOTE: Any given node can have a maximum of
"1" push queue processor.

The values above specify that one of each of the six types of processors will run on any given JVM.
This is the minimal supported resourcing, but ensures that single-JVM systems perform all required
functions, and each added JVM will automatically spin up its own processors to share the workload.
In practice, however, deployments of scale will often want to increase the level of concurrency (and
therefore, the system resources) granted to the Informer processors. Not all JVMs in a Maximo
environment are equivalent, however, so Maximo’s instance-specific property support can be used
to create uneven distribution of work.

89

Notification Pool Configuration

To use the old notification queue processor, set the Maximo property

informer.notification.queue.QueueProcessor to
com.interlocsolutions.maximo.notify.queue.notification.BulkByThreadNotificationJobQueueProcesso

r.

The informer.queue.pool.notification property is specified as a comma-separated string of the
form "x,y,z", where x represents the number of "User Expansion" processors, y represents the
number of "User Evaluator" processors, and z represents the number of "Record" processors.

The "User Expansion” pool is important, but more than 1 is not necessary. When scaling up, the
most effective balance of "User Evaluation" vs "Record" processors depends on your Profile, users,
and environment. Generally speaking, if you have many users with few records on average, then
increasing "User Evaluation" processors will help more, and if you have fewer users with more
records on average, then increasing "Record" processors will help more.

Catalog Pool Configuration

To use the old catalog queue processor, set the Maximo property
informer.catalog.queue.QueueProcessor to
com.interlocsolutions.maximo.notify.queue.db.BulkByThreadCatalogJobQueueProcessor.

The informer.queue.pool.catalog property is specified as a comma-separated string of the form
"x,y", where x represents the number of "Aggregate" processors, and y represents the number of
"Record" processors.

"Record" processors should always be significantly more numerous than "Aggregate" processors.
When scaling up the processor pool, a ratio of about 1-to-10 is a reasonable place to start.

Push Pool Configuration

To use the old push queue processor, set the Maximo property informer.push.queue.QueueProcessor
to com.interlocsolutions.maximo.notify.push.BulkByThreadPushJobQueueProcessor.

The informer.queue.pool.push property is specified as a single numeric value. If using a Push
configuration, set this value to 1 on at least one JVM. If you are certain you will not use Push, you
can disable this globally by setting a value of 0.

90

Example 6. Dedicated Single JVM

Scenario: A clustered system which has a single dedicated Informer JVM, called INF1. Push
configurations are used by one or more Profiles in the system.

Property Instance-Specific? Value
informer.queue.pool.notificati 0

on

informer.queue.pool.catalog 0
informer.queue.pool.push 0
informer.queue.pool.notificati INF1 1,5,10
on

informer.queue.pool.catalog INF1 3,30
informer.queue.pool.push INF1 1

Example 7. Dedicated Cluster

Scenario: A clustered system which has two dedicated Informer JVMs, called INF1 and INF2.
Push configurations are used by one or more Profiles in the system.

Property Instance-Specific? Value
informer.queue.pool.notificati 0

on

informer.queue.pool.catalog 0
informer.queue.pool.push 0
informer.queue.pool.notificati INF1 1,5,10
on

informer.queue.pool.catalog INF1 3,30
informer.queue.pool.push INF1 1
informer.queue.pool.notificati INF2 0,5,10
on

informer.queue.pool.catalog INF2 3,30

informer.queue.pool.push INF2 0

Example 8. Reuse of Non-UI JVMs

Scenario: A clustered system which has no dedicated Informer JVMs. The UI JVMs should be
protected, but other JVMs in the system have a little bandwidth to spare. No Profiles in the

system use Push.

Property

informer.queue.pool.notificati
on

informer.queue.pool.catalog
informer.queue.pool.push

informer.queue.pool.notificati
on

informer.queue.pool.catalog

informer.queue.pool.notificati
on

informer.queue.pool.catalog

informer.queue.pool.notificati
on

informer.queue.pool.catalog

Example 9. Equal Distribution

92

Instance-Specific?

MIF1

MIF1
MIF2

MIF2
CRON1

CRON1

Value

0,1,5

1,10
0,1,5

1,10
1,1,10

1,20

Scenario: A clustered system which has no dedicated Informer JVMs, but just wants to share a
light load equally across all JVMs and see how that goes. Push configurations are used by one

or more Profiles in the system.

NOTE

Property

informer.queue.pool.notificati
on

informer.queue.pool.catalog

informer.queue.pool.push

Instance-Specific?

This is the same as default configuration, without applying any changes.

Value

1,11

11
1

Example 10. Minimal Maximo System

Scenario: A single-JVM system which needs to accelerate Informer processing. Push
configurations are used by one or more Profiles in the system.

Property Instance-Specific? Value
informer.queue.pool.notificati 1,10,10
on

informer.queue.pool.catalog 2,20

informer.queue.pool.push 1

	Mobile Informer Installation Guide
	Table of Contents
	Preface
	Document Changelog
	Release Notes
	Supported Platforms
	Installation
	Obtaining Binaries
	Pre-Installation Checks
	Setup Phase for Maximo 7.6
	Informer Installation
	Setup Phase for MAS Manage
	Post-Installation Phase

	Informer Configuration Guide
	Informer License Installation
	Cluster Configuration
	LDAP Configuration

	Optional Tools and Components
	Informer Push Relay
	Informer Server Check Utility
	External Queue Database Configuration

	Appendix
	Appendix: Maximo Properties
	Appendix: Informer Cron Tasks
	Appendix: Maximo Loggers
	Appendix: Informer Installer Details
	Appendix: Using an external Oracle Database for Informer Queues
	Appendix: Using an external SqlServer Database for Informer Queues
	Appendix: Using an external DB2 Database for Informer Queues
	Appendix: Using an external MySQL Database for Informer Queues
	Appendix: Using an external SQLite Database for Informer Queues
	Appendix: Using an external PostgreSQL Database for Informer Queues
	Appendix: Additional Pre-Installation Checks when Upgrading from Informer 4.x
	Appendix: Additional Pre-Installation Checks when Upgrading from Informer 5.2
	Appendix: Additional Pre-Installation Checks when Upgrading from Informer 5.3
	Appendix: Additional Pre-Installation Checks when Upgrading from Informer 5.5
	Appendix: Pre-6 Queue Processors

